A novel fabrication method for polymeric flat plate pulsating heat pipe via additive manufacturing


CANDAN CANDERE A., Miché N., Bernagozzi M., SAĞLAM M., Georgoulas A., AYDIN O., ...More

Applied Thermal Engineering, vol.241, 2024 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 241
  • Publication Date: 2024
  • Doi Number: 10.1016/j.applthermaleng.2024.122398
  • Journal Name: Applied Thermal Engineering
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aerospace Database, Business Source Elite, Business Source Premier, Communication Abstracts, Compendex, INSPEC, Metadex, DIALNET, Civil Engineering Abstracts
  • Keywords: Additive manufacturing, Polymeric pulsating heat pipe, Thermal performance, Visualization
  • Karadeniz Technical University Affiliated: Yes

Abstract

Advancements in material development and fabrication techniques have led to the production of a new generation of electronic devices that are flexible, compact, small-scale, and lightweight. Effective thermal control management is crucial to ensure their performance, reliability, and durability. This paper proposes the fabrication of a polymeric pulsating heat pipe (PPHP) using a common stereolithography technology. The heat transfer performance of three PPHPs with different channel configurations was compared at heating powers ranging from 5 to 30 W and at a constant filling ratio of 50 %, using FC-72 as the working fluid due to its compatibility with the solid material. All three PPHPs have eight turns and length, width, and thickness of 185 mm, 85 mm, and 2 mm, respectively. All experiments were conducted for four thermal hysteresis cycles. The findings revealed that pressure and temperature distributions displayed similar patterns and fluctuations in response to heating power for all the PPHPs. Despite the simple technique and the use of a standard plastic material, the thermal resistance ranged from 2.5 to 1.7 °C/W, i.e., the effective thermal conductivity was already more than one thousand times higher than the conductivity of a solid plastic sheet for a 30 W heat input. The non-uniform channel configurations in PPHPs offered the potential of better heat transfer performance, fluid distribution, and operational stability. The present overture investigation paves the way for a more extended development of plastic 3D printing technologies for prototyping flexible PHPs and for teaching purposes.