Submission Date: May 24th, 2024 by 15:⁰⁰

Student No: _____

Name<u>:</u>_____

CE 3010 - Steel Structures TERM PROJECT

1. Aim of the Term Project

- To do manual design of the elements of an industrial building with a truss roof and a two story steel frame office building.
- To practice structural mechanics knowledge to design steel structural elements.
- To understand the importance of individual element design as part of a building.
- To achieve better understanding of the requirements given in latest steel design code for modelling and designing of steel structural elements under realistic constraints.

2. General Requirements

A proper report, neatly written, including contents page should be submitted. Report should include a copy of this term project paper, calculation sheets with all the details and drawings. All pages should be numbered and the report must be printed and prepared in **spiral** format.

3. Design Brief

- Details of the buildings under consideration are given on the following pages. Fig. 1 shows the typical floor and roof plan layout. Fig. 2 and Fig. 3 depict east and north elevation of the buildings, respectively. Geometrical and technical values for design are listed in **Table 1** for each student.
- 100 mm thick in-situ concrete one-way slab spanning onto steel beams provides <u>full lateral</u> restraint for these beams. Unit weight of the concrete is 25 kN/m³.
- Assume that the <u>lightweight partition wall</u> load is a live load (Q) type on the floor. (see Table 1 for the weight (kN/m²) of lightweight partition wall).
- 1st floor will be offices with **3.0 kN/m²** Live Load (**Q**).
- The truss roof will be designed under dead and snow load (S). Dead load (G) including self-weights of the truss, sheeting, stability members, and purlins can be taken as <u>0.08x(12xL1) kN/m²</u>. (See Table-1 for L1 and S). Dead and snow loads are given for the plan view area (horizontal area).
- Use LRFD or ASD for your design. Assume Steel Grade S235 material for all the design calculations.
- Assume **U=0.8** for preliminary design of tension members.

Design the followings: Learning Outcomes, LO-1 (50%), LO-3 (50%) for each question below.

- Truss: Determine maximum top chord member force (O_{max}), maximum bottom chord member force (U_{max}), maximum force (D_{max}) among diagonals and verticals (V_{max}).
- 2. Design the bottom chord member with maximum axial force U_{max} , select 2L (back to back).
- 3. Design the top chord member with maximum axial force \mathbf{O}_{\max} , select $\mathbf{2L}$ (back to back).
- 4. Design the diagonal member with maximum axial force $\boldsymbol{D}_{\text{max}}$, select $\boldsymbol{2L}$ (back to back).
- 5. Design the vertical member with maximum axial force V_{max} , select 2L (back to back).
- 6. Design the columns of the roof truss, select **HEB** profile.
- Two story frame: Design the Level 1 floor equally spaced secondary beams (B1) and the main girder (B2). Select the most economical IPE profiles considering all the limit states necessary. The beam end connections are pinned.
- 8. Design the **welded** connections in circles **A** and **B** shown in Fig. 3.
- 9. Draw the truss connection details A and B with a scale of 1:5.

Fig. 1. Plan view layout

Fig. 2. Elevation view (East)

Fig. 3. Elevation view (North)

Student ID	L ₁ (cm)	L₂ (cm)	L₃ (cm)	Partition wall (kN/m ²)	Snow load (S) (kN/m²)	Level 1 (cm)	Level 2 (cm)	h (cm)
ABCDEF	125+5xF	500+20xE	400+20xD	0.8+0.1xF	0.75+0.06xE	700+10xF	600+10xE	50+5xF

Table 1. Geometrical and technical values for design

Fig. 4. Isometric view of the industrial building