
5 Week

FUNCTIONS

In addition to the basic operations, we can
also call the internal functions to use, such as
the trigonometry functions, logarithmic,
exponential functions etc. A function is use as
“functionname()”, where the input value to
the function is given inside the parentheses.

>> sqrt(4)

ans =

2

“sqrt()” is a function that takes the square root
of the input variable.

Trigonometry Functions
Note, when you use trigonometric functions, such as sine and cosine, the
input is an angle measured in radiance. If you know the angle measured in
degrees, you can do it as

>> sin(30*pi/180)
ans =
0.5000

Where pi (π) =3.1416 (built in constant). The above express converts the angle in
degrees to radiances first and then evaluated by the sine function. Similarly you
can do

>> cos(30*pi/180)

ans =

0.8660

>> tan(30*pi/180)

ans =

0.5774

EXAMPLE

Please find the value for the following function with a given

variable x=45.

Function is

1. Way 2. Way

Exponential Functions

we use exp(x) to calculate the xth power to e.
e =2.718.

>> exp(1)

ans =

2.7183

>> exp(2)

ans =

7.3891

Logaritmic Functions

For logarithms,

• the natural logarithm lnx in mathematics is
written log(x) in MATLAB, and

lnx=logex (in mathematics)

For x variable

Lnx in mathematics

log(x) in MATLAB

Example

log ten of x in mathematics is log10(x) in MATLAB

Example

We know that ln(1) and lg(1) are both 0!!! İn mathematics

round, floor, ceiling. Rounding of number

round(number) - rounding to the closest integer

floor(number)-rounding towards lesser integer
ceil(number) -rounding towards greater integer

Example
math:round(45.50) -Will equal 46
math:floor(45.60) -Will equal 45
math:ceil(45.20) -Will equal 46
math:round(-4.5) -Will equal -4
math:floor(-4.6) -Will equal -5
math:ceil(-4.20) -Will equal -4

:fix(-4.20)=-4.0

The If Statement

Relational operators
Relational operators are used to specify the conditions for the for, elseif

and while statements.The syntax of these statements is given in the
following table:

NOTE!!! == is not the same as = ; MATLAB's treats them very differently.
 == compares two values, while = assigns a value to a variable.

Standard logic operators

"&" (and)

“¦” (or),

“˜ “(not).

There are times when you want certain parts of your program to be executed

only in limited circumstances. The way to do that is to put the code within an
"if" statement.

 The most basic structure for an "if" statement is the following:

if (condition statement)
(matlab commands)
end

if (condition statement 1)
(matlab commands 1)
else
(matlab commands 2)
end

More complicated structures are also possible including combinations like the
following:

if (condition statement 1)
(matlab commands 1)
elseif (condition statement 2)
(matlab commands 2)
elseif (condition statement 3)
(matlab commands 3)
. . .
else (matlab commands)
end

EXAMPLE 1: For example, suppose that we had a program which checked the
value of some variable, a say, and if it’s value was larger then 3 we wanted to
consider half that value then we would use the following matlab commands in
a script M-file:

EXAMPLE 2: Whereas in the previous example, we only specified an

outcome if the variable a was bigger than 3, this time we could specify
outcomes depending on whether a is smaller than 1, between 1 and three
or if it was bigger than 3:

Since a lay between 1 and 3, the elseif part of the loop was utilized
a=
1.7183

EXAMPLE 3: For example to check to see if a is less than b and at the same

time b is greater than or equal to c you would use the following
commands:

if (a < b) | (b >= c)
Matlab commands
 else
Matlab commands
end

break command –exits for loop ; used in case of
error.

continue command –ends one for loop iteration
; crudely equivalent to GOTO end

User-defined scripts & functions

• MATLAB is built around commands & functions: both
sets are computer codes that accept input from the
user and provide output. The latter does not use or
save variables in the workspace.

• Functions and M-file command scripts allow you to
do technical computing efficiently; well designed
code helps you to tasks multiple times.

• It is necessary for you, as the programmer, to know
exactly how a function performs its task; otherwise,
how would you know that it is doing the task
correctly.

Concept on function M-files

• User-defined functions are similar to the
MATLAB pre-defined functions.

• They take a certain number of inputs, perform
some operation, and give output(s).

• Just as with MATLAB built-in functions, we
need to know what they are supposed to do,
and know that it does it correctly.

Syntax for functions
• Calling a user-defined function:

– my_function(x)

• Defining a user-defined function:
– function y = my_function(x)

– x is a value that is the input to my_function.

– my_function performs a functional operation.

– y is a value that is the output of my_function.

• Functions must be written in M-files. The M-
file must have the same name as the function.

Notes on functions
• The convention for naming functions is the same as

for variables. A function name must start with a
letter, should be meaningful, should not use the
name of an existing function, and should not be
excessively long.

• It is important that you give meaningful variable
names to variables inside a function that you write,
so that you and others can understand what the
function does.

• Comments become extremely important in
functions. Comments help both you and anyone who
might use the function to understand what it does.

Examples of function M-files

function volume = volume_sphere(radius)
volume = (4/3)*pi.*(radius^3);

function perimeter = perimeter_square(side)
perimeter = 4 .* side;

function root = square_root(x)
root = x.^(1/2);

ansans=16=16

perimeter_square(4)perimeter_square(4)

Using a function in the Command
Window

• User-defined functions are accessed in the same way
as any MATLAB built-in functions.

• The function M-file, in this case the
perimeter_square function from the previous slide,
must be saved as “perimeter_square.m” in your
current directory (otherwise it must be in the path)*.

• You use it by typing in the command window:

*Note: The directory that your function is saved in MUST be in the

path; otherwise MATLAB will not be able to find and run the file.

Input/output & functions

• Several kinds of functions can be created with
different combinations of input and/or
output:
– Functions with input and output arguments

– Functions with input arguments and no output
arguments

– Functions with output arguments and no input
arguments

– Functions with neither input arguments nor
output arguments

x = xo + x = xo + vovo.*t + (1/2).*a.*t.^2;.*t + (1/2).*a.*t.^2;

function x = function x = displacement(xodisplacement(xo, , vovo, a, t), a, t)

Function with multiple inputs

• User-defined functions can have a number of
input parameters. They can also have a
number of output parameters.

• Recall the constant acceleration equation of
free fall:
– x = xo + vot + (1/2)at2

– This equation can be coded as a user-defined
MATLAB function as follows:

F = m.*a;F = m.*a;

a = (v2a = (v2--v1)./(t2v1)./(t2--t1);t1);

function [a, F] = function [a, F] =

acceleration_calculation(v2,v1,t2,t1,m)acceleration_calculation(v2,v1,t2,t1,m)

Function with multiple inputs and
outputs

• The acceleration of a particle and the force
acting on it are as follows:

– a = (v2-v1)/(t2-t1) % An approximation!

– F = ma % Newton’s second law

– A user-defined function can be created to perform
both of the calculations.

Hands on

• Use the acceleration_calculation function to
calculate the acceleration and force on an object
with the following properties:

v1=4 m/s, v2=7 m/s, m= 2 kg,

t1= 0 s, t2= 10 s

Since acceleration_calculation has two outputs, we must set it

equal to two variables when we call it. The syntax is:

[acceleration, force]=acceleration_calculation(v2, v1, t2, t1, m).

The same method must be applied to all functions with multiple

outputs in order for them to work properly.

mass_of_earthmass_of_earth = 5.976E24;= 5.976E24;

function function mass_of_earthmass_of_earth = = moemoe()()

Functions with no input

• If you need to access some constant value a number of times,
instead of hard-coding the constant value every time it is
needed, we can hard-code it once into a function that has no
input.

• When the constant is needed, its value is called via the
function.

• As an example, if we needed, for whatever reason, the mass
of the earth (in kg) multiple times, we could write a function
to store it as follows:

Functions with no output

• Functions with no output can be used for
many purposes, such as to plot figures from a
set of input data or print input information to
the command window (output here implies
results from operations on input; no just
displays).

• The built-in MATLAB function tic has no
output. It starts a timer going for use with
another built-in MATLAB function, toc.

Functions with no input or output

• A function with no input or output consists of
some hard-coded information that is to be
used in a specific procedure.

• An example of this is a function that plots a
specific figure. Plotting the figure is the only
thing the function does; it does not have any
input or operations that lead to computed
values for output.

r = [1 1 1 1 1 1];r = [1 1 1 1 1 1];

polar(thetapolar(theta, r);, r);

theta = pi/2 : 0.8 * pi : theta = pi/2 : 0.8 * pi :

4.8 * pi;4.8 * pi;

function [] = star()function [] = star()

A Function with no input or output

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Although the star function generates a plot, in the

strictest sense it does not have any output. If you try to

evaluate the expression A=star in MATLAB, you will get

an error, because star has no output.

Notes on variables
• Variables that are created inside of a user-defined

function may only be accessed from inside of that
function. They are referred to as local variables.

• After the function completes its operations, the local
variables are deleted from memory.

• The only variable that appears in the workspace is
the output, if any, of the function.

• Conversely, functions cannot access variables from
the workspace (with the exception of any input
parameters they might have or “global variables”---
see MATLAB help on this matter).

The type command

• The type command followed by the name of an M-
file prints the contents of the M-file onto the
Command Window. This includes any user-defined or
built-in functions and command scripts available in
MATLAB. Using the type command instead of the
editor to view the contents of M-files can prevent
you from accidentally changing the contents of your
files.

• The type command is an alternative to using the Help
Menu or editor for looking up details associated with
functions & commands.

Exercises

• Write a function that converts Celsius
temperatures into Fahrenheit.

• Write a function that takes force,
displacement, and angle (in degrees) as input
and outputs work. Use MATLAB help to find a
cosine function that uses degrees.

Summary

• Function concept and syntax

• Different kinds of functions

– Functions with input and output

– Functions with input only

– Functions with output only

– Functions with no input or output

	Slayt 1: 5 Week
	Slayt 2: FUNCTIONS
	Slayt 3
	Slayt 4: Trigonometry Functions
	Slayt 5
	Slayt 6: EXAMPLE
	Slayt 7: Exponential Functions
	Slayt 8: Logaritmic Functions
	Slayt 9: log ten of x in mathematics is log10(x) in MATLAB
	Slayt 10: round, floor, ceiling. Rounding of number
	Slayt 11
	Slayt 12: Relational operators
	Slayt 13: Standard logic operators
	Slayt 14
	Slayt 15: EXAMPLE 1: For example, suppose that we had a program which checked the value of some variable, a say, and if it’s value was larger then 3 we wanted to consider half that value then we would use the following matlab commands in a script M-file:
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22: User-defined scripts & functions
	Slayt 23: Concept on function M-files
	Slayt 24: Syntax for functions
	Slayt 25: Notes on functions
	Slayt 26: Examples of function M-files
	Slayt 27: Using a function in the Command Window
	Slayt 28: Input/output & functions
	Slayt 29: Function with multiple inputs
	Slayt 30: Function with multiple inputs and outputs
	Slayt 31: Hands on
	Slayt 32: Functions with no input
	Slayt 33: Functions with no output
	Slayt 34: Functions with no input or output
	Slayt 35: A Function with no input or output
	Slayt 36: Notes on variables
	Slayt 37: The type command
	Slayt 38: Exercises
	Slayt 39: Summary

