
CHAPTER 2. VECTOR FORCES 

 

2.1. Vector 

 

Many physical quantities in engineering mechanics are measured using 

either scalars or vectors. 

Scalar. A scalar is any positive or negative physical quantity that can be completely specified by its magnitude. Examples of scalar 

quantities include length, mass, and time. Only one number is required to represent a scalar in any dimensional space. 

Vector. A vector is any physical quantity that requires both a magnitude and a direction for its complete description. Examples of 

vectors encountered in statics are force, position, and moment. A vector requires n number of coordinates to be characterized in a n 

dimensional space. For example, 3 coordinates are required to define a vector in a 3D.  

Vector quantities are represented by simply drawing an arrow above it, �⃗⃗� , or a small line under it, 𝐀. In this course, the vectors will be 

presented with an arrow above them, such as �⃗⃗� . Magnitude of a vector can be expressed simply by vector itself without an arrow, A 

or the vector representation can be written in a absolute value sign, |�⃗⃗� | 

 

 

 

 

 

 



Vectors can be divided into three categories corresponding to their physical representations. 

i. Floating Vector (TR: Kayan Vektör)  If a vector  can move on the line of action from one point to another provided that it maintains 

its magnitude and direction, it is called floating vector. Force is an example of floating vector in Statics. 

 

 

 

 

 

 

 

 

 

 

Two floating vectors on the same line of action are equal to each other provided that both has same magnitude and direction even if 

their point of actions are not same. 

 

 

 

 

 

Fig. 2.1. Floating vector 

 



ii. Free Vector (TR: Serbest Vector) If the line of action does not change the effect of a vector provided that the vector has same 

magnitude and direction, it can move freely in the space and is called free vector. Moment is an example of free vector in Statics. 

 

 

 

 

 

 

 

 

 

Two free vectors are equal to each other provided that both has same magnitude and direction. 

 

iii. Fixed Vector (TR: Bağlı Vektör) If not only magnitude and direction but also point of application change the effect of a vector, it is 

called fixed vector and it position cannot be changed.  Force is an example of fixed vector in deformable-body mechanics. Two 

fixed vectors are equal to each other provided that both has same magnitude, direction and same point of application. 

 

 

 

 

 

Fig. 2.2. Free vector 

 



2.2. Vector Operations 

 

2.2.1. Multiplication and Division of a Vector by a Scalar 

If a vector is multiplied by a positive scalar, its magnitude is increased by that amount. Multiplying by a negative scalar will also 

change the directional sense of the vector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3. Scalar multiplication and division 



2.2.2. Vector Addition 

Two vectors can be added using the parallelogram law of addition and obtained resultant vector. Addition procedure: 

• First join the tails of the vectors (let’s name them as 𝐴  and �⃗� ) at a point O to make them concurrent. 

• From the head of first vector, 𝐴 , draw a line parallel to the second vector, �⃗� .  

• Draw another line from the head of �⃗�  that is parallel to 𝐴 . 

• These two lines intersect at point P to form the adjacent sides of a parallelogram. 

• The diagonal of this parallelogram from O to P forms R, which then represents the resultant vector  𝑹 ⃗⃗  ⃗ = �⃗⃗� + �⃗⃗� . 

 

 

 

 

 

 

 

 

 

 

The order of 𝐴  and �⃗�  does not change the resultant vector. Thus, vector addition is commutative, i.e. 𝑹 ⃗⃗  ⃗ = �⃗⃗� + �⃗⃗� =  �⃗⃗� + �⃗⃗� . 

Fig. 2.4. Addition of two vectors 

O O 



The magnitude and direction of the resultant can be obtained using sine and cosine theorem.  

 

 

 

For the given triangle, cosine theorem can be written as 2 2 2 2 cosa b c bc A= + −  whereas sine theorem can be expressed as 

sin sin sin

a b c

A B C
= = . Applying these theorems to OPL  triangle, following expressions can be obtained. 
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Equations have specific expressions for 0 = , 90 =  and 180 = . 

i. 𝜽 = 𝟎 (Both vectors have same directions) 
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If the two vectors have same direction, i.e. 0 = ,  the resultant force can be algebraic or scalar addition of two vectors and the 

resultant force is on the same direction with vectors added, i.e. 0 = . 

 

ii. 𝜽 = 𝟗𝟎 (vectors are perpendicular to each other) 
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iii. 𝜽 = 𝟏𝟖𝟎 (Vectors have opposite directions)  
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If the two vectors have opposite direction, i.e. 180 = ,  the resultant force can be algebraic or scalar subtraction of two vectors and 

the resultant force is on the same direction with the vector which is the one from the added vectors that has the bigger magnitude, 

i.e. 0 =  or 180 = . 

 

Addition of Several Vectors 

If more than two vectors are to be added, successive applications of the parallelogram law can be carried out in order to obtain the 

resultant force. For example, if three forces 𝑭𝟏
⃗⃗ ⃗⃗  , 𝑭𝟐

⃗⃗ ⃗⃗    and 𝑭𝟑
⃗⃗ ⃗⃗    act at a point O, the resultant of any two of the forces is found, say     𝑭𝟏

⃗⃗ ⃗⃗  +

𝑭𝟐
⃗⃗ ⃗⃗  , and then this resultant is added to the third force, yielding the resultant of all three forces; i.e., �⃗⃗� = (𝑭𝟏

⃗⃗ ⃗⃗  + 𝑭𝟐
⃗⃗ ⃗⃗  ) + 𝑭𝟑

⃗⃗ ⃗⃗  . Using the 

parallelogram law to add more than two forces, as in the example, often requires extensive geometric and trigonometric calculation 

to determine the numerical values for the magnitude and direction of the resultant. Instead, problems of this type are easily solved 

by using the rectangular component method which will be explained in this chapter. 

 

 

 



2.2.3. Vector Subtraction 

The subtraction of two forces (let’s name them as �⃗⃗�  and �⃗⃗� ) can be expressed as        𝑹 ⃗⃗  ⃗ = �⃗⃗� − �⃗⃗� =  �⃗⃗� + (−�⃗⃗� ). Therefore, rules of 

vector addition can be applied to vector subtraction. 

 

 

NOTE: Since force is a vector, all the operations can be applied to the forces. 

 

 

 

 

 

 

 

 

 

 



Example 2.1.  Determine the magnitude of the resultant force and its 

direction measured counterclockwise from the positive x axis. 

 

Solution: 

 

 

 

 

 

 

 

 

 

 

 

 



2.3. Addition of a System of Coplanar Forces 

2.3.1. Rectangular Components of a Vector 

When a force is resolved into two components perpendicular to each other, e.g. as in a Cartesian coordinate system, the components 

are then called rectangular components. 

cosxF F =  or sinxF F =  

 sinyF F =   or  cosxF F =  

It is also possible to represent the x and y components of a force in terms of 

Cartesian unit vectors 𝑖  and 𝑗 . They are called unit vectors because they have a 

dimensionless magnitude of 1, and so they can be used to designate the directions 

of the x and y axes, respectively. Thus, Cartesian vector notation of a vector is given 

below. 

          𝐹𝑥⃗⃗  ⃗ = 𝐹𝑥𝑖 ,     𝐹𝑦⃗⃗  ⃗ = 𝐹𝑦𝑗  

          𝐹 = 𝐹𝑥⃗⃗  ⃗ + 𝐹𝑦⃗⃗  ⃗ = 𝐹𝑥𝑖 + 𝐹𝑦𝑗  

 

 

 

 

 

 

 



If a vector is given by a slope representation as in the below figure, the rectangular components can be found as follows. 
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It must be noted that, the signs of the components should be determined by the direction of the force. 

 

 

𝐹1
⃗⃗  ⃗ = −𝐹1𝑥𝑖 + 𝐹1𝑦𝑗  

𝐹2
⃗⃗  ⃗ = −𝐹2𝑥𝑖 − 𝐹2𝑦𝑗  

 

  

 

 

 

       

 

 



2.3.2. Resultant of Coplanar Forces 

 

We can use rectangular components to determine the resultant of several coplanar forces, i.e., forces that all lie in the same plane, 

e.g. xy plane. To do this, each force is first resolved into its x and y components, and then the respective components are added using 

scalar algebra since they are collinear. The resultant force is then formed by adding the resultant components using the parallelogram 

law.  

 𝐹1
⃗⃗  ⃗ = 𝐹1𝑥𝑖 + 𝐹1𝑦𝑗  

𝐹2
⃗⃗  ⃗ = 𝐹2𝑥𝑖 + 𝐹2𝑦𝑗  

 

𝐹𝑛⃗⃗  ⃗ = 𝐹𝑛𝑥𝑖 + 𝐹𝑛𝑦𝑗  

�⃗� = 𝐹1
⃗⃗  ⃗ + 𝐹2

⃗⃗  ⃗ + ⋯+ 𝐹𝑛⃗⃗  ⃗  

�⃗� = (𝐹1𝑥𝑖 + 𝐹1𝑦𝑗 ) + (𝐹2𝑥𝑖 + 𝐹2𝑦𝑗 ) + ⋯+ (𝐹𝑛𝑥𝑖 + 𝐹𝑛𝑦𝑗 ) 

�⃗� = (𝐹1𝑥 + 𝐹2𝑥 + ⋯+ 𝐹𝑛𝑥)𝑖 + (𝐹1𝑦 + 𝐹2𝑦 + ⋯+ 𝐹𝑛𝑦)𝑗  

�⃗� = 𝑅𝑥𝑖 + 𝑅𝑦𝑗  

𝑅𝑥 = ∑ 𝐹𝑖𝑥
𝑛
𝑖=1  ,    𝑅𝑦 = ∑ 𝐹𝑖𝑦

𝑛
𝑖=1  

 

 

 

 

 



Once the components of resultant force are determined, they may be sketched along 

the x and y axes with their proper sense of direction, and the resultant force can be 

determined from vector addition. 

 

2 2= +x yR R R  
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Resultant Force Problems 

i. Resolve all the given forces into their components 

ii. Find components of resultant simply using equations, 𝑅𝑥 = ∑ 𝐹𝑖𝑥
𝑛
𝑖=1  ,    𝑅𝑦 = ∑ 𝐹𝑖𝑦

𝑛
𝑖=1  

iii. Calculate magnitude and angle of the resultant 

 

 

 

 

 

 

 

 

 



Example 2.2 

Determine the magnitude and direction of the 

resultant force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 2.3.  

If the resultant force acting on the bracket is required to be a minimum, determine the 

magnitudes of 𝐹1
⃗⃗  ⃗ and the resultant force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.4. Vectors in Space (3D) 

 

2.4.1. Cartesian Vector Form 

 

The operations of vector algebra, when applied to solving problems in three dimensions (space), are greatly simplified if the vectors 

are first represented in Cartesian vector form. 

We will use a right-handed coordinate system to develop the theory of vector algebra that follows. A rectangular coordinate system 

is said to be right-handed if the thumb of the right hand points in the direction of the positive z axis when the right-hand fingers are 

curled about this axis and directed from the positive x towards the positive y axis.  

 

 

 

 

  

 

 

 

 

 
Fig. 2.6. Right-handed coordinate system 

 

 



A vector, let’s name it as �⃗⃗� , may have three rectangular components along the x, y, z 

coordinate axes, depending on how the vector is oriented relative to the axes. The 

components of vector �⃗⃗�  can be found as  �⃗⃗� = 𝑨𝒛
⃗⃗ ⃗⃗ + 𝑨′⃗⃗  ⃗, then 𝑨′⃗⃗  ⃗ can be resolved into its 

components as 𝑨′⃗⃗  ⃗ = 𝑨𝒙
⃗⃗ ⃗⃗  + 𝑨𝒚

⃗⃗ ⃗⃗   . 

Combining these two equations vector �⃗⃗�  can be represent by three separate components. 

                                                                                      �⃗⃗� = 𝑨𝒙
⃗⃗ ⃗⃗  + 𝑨𝒚

⃗⃗ ⃗⃗  + 𝑨𝒛
⃗⃗ ⃗⃗  

In three dimensions, the set of Cartesian unit vectors, 𝒊 , 𝒋,⃗⃗  �⃗⃗� , is used to designate the 

directions of the x, y, z axes, respectively. 

In space, vector �⃗⃗�  can be shown in Cartesian coordinates as follows (Cartesian Vector 

Representation). 

          �⃗⃗� = 𝑨𝒙𝒊 + 𝑨𝒚𝒋 + 𝑨𝒛�⃗⃗�   

 

 

 

 

 

 

 

 



Magnitude of a Cartesian Vector 

A vector �⃗⃗�  is given in Cartesian coordinates. 

         �⃗⃗� = 𝐴𝑥𝒊 + 𝐴𝑦𝒋 + 𝐴𝑧 �⃗⃗�   

From the figure at the left, following geometric relations can be written. 
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Combining these two equations, one can easily get the magnitude of  �⃗⃗� . 

 2 2 2= = + +x y zA A A A A   

 

2.4.2. Coordinate Direction Angles 

For a given vector  �⃗⃗� = 𝑨𝒙
⃗⃗ ⃗⃗  + 𝑨𝒚

⃗⃗ ⃗⃗  + 𝑨𝒛
⃗⃗ ⃗⃗ , unit vector in the direction of �⃗⃗�  can be easily obtained simply dividing 𝐴  by its magnitude. 

𝒖𝑨⃗⃗⃗⃗  ⃗ =
�⃗⃗� 

|�⃗⃗� |
=

𝐴𝑥

𝐴
𝒊 +

𝐴𝑦

𝐴
𝒋 +

𝐴𝑧

𝐴
�⃗⃗�  

 

 

 

 

 



 

Before looking coordinate direction angles in space, let’s focus on a vector in a plane. 

�⃗⃗� = 𝑨𝒙
⃗⃗ ⃗⃗  + 𝑨𝒚

⃗⃗ ⃗⃗   

�⃗⃗� = 𝐴𝑥𝒊 + 𝐴𝑦𝒋  

Let’s define a unit  vector 𝒖𝑨⃗⃗⃗⃗  ⃗ in the direction of �⃗⃗� . 

𝒖𝑨⃗⃗⃗⃗  ⃗ =
�⃗⃗� 

|�⃗⃗� |
=

𝐴𝑥

𝐴
𝒊 +

𝐴𝑦

𝐴
𝒋  

It is also known that, 𝐴𝑥 = 𝐴𝑐𝑜𝑠𝜃  and  𝐴𝑦 = 𝐴𝑐𝑜𝑠𝛽. Putting these equations into unit 

vector expression, following equations can be written. 

𝒖𝑨⃗⃗⃗⃗  ⃗ =
�⃗⃗� 

|�⃗⃗� |
=

𝐴𝑥

𝐴
𝒊 +

𝐴𝑦

𝐴
𝒋 =

𝐴𝑐𝑜𝑠𝜃

𝐴
𝒊 +

𝐴𝑐𝑜𝑠𝛽

𝐴
𝒋 = 𝑐𝑜𝑠𝜃𝒊 + 𝑐𝑜𝑠𝛽𝒋  

The unit vector in the direction of �⃗⃗�  is obtained in terms of angles 𝜃 and 𝛽 measured between the tail of A and the positive x, y axes, 

respectively. These angles which are used to define the direction of a vector are called coordinate direction angles,  which are 𝜃 and 

𝛽 in the above example. 

The magnitude of a unit vector equals one and then from the above equation an important relation among the direction cosines can 

be formulated. 

2 2 2 21 1   = = + = → + =cos cos cos cosA Au u  

This equality states that only one coordinate direction angle is adequate to define the direction of the vector. The second angle can 

be easily found using this equation. 

 

 



If these principles applied to a vector �⃗⃗�  in a space, coordinate direction angles can easily be found.  

�⃗⃗� = 𝑨𝒙
⃗⃗ ⃗⃗  + 𝑨𝒚

⃗⃗ ⃗⃗  + 𝑨𝒛
⃗⃗ ⃗⃗  

𝒖𝑨⃗⃗⃗⃗  ⃗ =
�⃗⃗� 

|�⃗⃗� |
=

𝐴𝑥

𝐴
𝒊 +

𝐴𝑦

𝐴
𝒋 +

𝐴𝑧

𝐴
�⃗⃗�  

      = 𝑐𝑜𝑠𝛼𝒊 + 𝑐𝑜𝑠𝛽𝒋 + +𝑐𝑜𝑠𝛾�⃗⃗�  

2 2 2 1  + + =cos cos cos  

 

If only two of the coordinate angles are known, the third angle can be found using this 

equation. (All angles are measured from the positive sense of the axis.) 

 

Transverse and Azimuth Angles 

Sometimes, the direction of a vector �⃗⃗�  can be specified using two angles, namely, a transverse angle 𝜃, and an azimuth angle    (phi), 

such as in the below figure. The components of �⃗⃗�   can then be determined by applying trigonometry. 
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Thus, �⃗⃗�  can be written as follows. 

    = + +cos sin sin sin cosA A i A j A k  



2.4.3. Addition of Vectors in Space 

Parallelogram theorem is valid for vectors in space. However, it is complicated and time consuming. Instead of this theorem, using 

rectangular components in Cartesian coordinates greatly simplifies the addition of two or more vectors as in the coplanar vectors. 

Similar to addition of coplanar vectors (Section 2.3.2), the resultant of 𝐹1
⃗⃗  ⃗, 𝐹2

⃗⃗  ⃗ , …., 𝐹𝑛⃗⃗  ⃗  can be obtained as below. 

�⃗� = 𝐹1
⃗⃗  ⃗ + 𝐹2

⃗⃗  ⃗ + ⋯+ 𝐹𝑛⃗⃗  ⃗  

�⃗� = (𝐹1𝑥𝑖 + 𝐹1𝑦𝑗 + 𝐹1𝑧�⃗� ) + (𝐹2𝑥𝑖 + 𝐹2𝑦𝑗 + 𝐹2𝑧�⃗� ) + ⋯+ 𝐹(𝑛𝑥𝑖 + 𝐹𝑛𝑦𝑗 + 𝐹𝑛𝑧�⃗� ) 

�⃗� = (𝐹1𝑥 + 𝐹2𝑥 + ⋯+ 𝐹𝑛𝑥)𝑖 + (𝐹1𝑦 + 𝐹2𝑦 + ⋯+ 𝐹𝑛𝑦)𝑗 + (𝐹1𝑧 + 𝐹2𝑧 + ⋯+ 𝐹𝑛𝑧)�⃗�  

�⃗� = 𝑅𝑥𝑖 + 𝑅𝑦𝑗 + 𝑅𝑧�⃗�  

𝑅𝑥 = ∑ 𝐹𝑖𝑥
𝑛
𝑖=1  ,    𝑅𝑦 = ∑ 𝐹𝑖𝑦

𝑛
𝑖=1 ,       𝑅𝑧 = ∑ 𝐹𝑖𝑧

𝑛
𝑖=1  

 

Resultant Force Problems 

i. Resolve all the given forces into their components 

ii. Find components of resultant simply using equation, 𝑅𝑥 = ∑ 𝐹𝑖𝑥
𝑛
𝑖=1  ,    𝑅𝑦 = ∑ 𝐹𝑖𝑦

𝑛
𝑖=1  

iii. Calculate magnitude and angle of the resultant 

 

 

 

 

 

 



Example 2.4.  

Express the force as a Cartesian vector. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 



 

Example 2.5  

Determine the magnitude and coordinate direction angles of the resultant 

force, and sketch this vector on the coordinate system. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 



2.4.4. Force Vector Directed Along a Line 

In many applications, the direction of a force �⃗⃗�  is defined by the coordinates of two points, M ( x1 , y1 , z1 ) and N ( x2 , y2 , z2), located 

on its line of action as in the figure below. 

Consider 𝑴𝑵⃗⃗⃗⃗ ⃗⃗  ⃗ vector which is on the same line of action with force vector �⃗⃗� . 

𝑴𝑵⃗⃗⃗⃗ ⃗⃗  ⃗ = 𝑑𝑥𝑖 + 𝑑𝑦𝑗 + 𝑑𝑧�⃗�  

The magnitude of 𝑴𝑵⃗⃗⃗⃗ ⃗⃗  ⃗, MN  equals the distance between point M and N. 

|𝑴𝑵⃗⃗⃗⃗ ⃗⃗  ⃗| = 𝑀𝑁 = 𝑑 = √𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 

�⃗⃗� =
𝑴𝑵⃗⃗⃗⃗ ⃗⃗  ⃗

𝑀𝑁
=

𝑑𝑥

𝑑
𝒊 +

𝑑𝑦

𝑑
𝒋 +

𝑑𝑧

𝑑
�⃗⃗�  

Since �⃗⃗�  is a unit vector in the direction of �⃗⃗� , �⃗⃗�  can be expressed in terms of �⃗⃗�  as simply multiplying the magnitude of  �⃗⃗�   with  �⃗⃗�  ,    

�⃗⃗� = 𝐹�⃗⃗� . 

It should be noted that it is important to select the first and second point in order to form a unit vector in the direction of �⃗⃗� . The first 

point should be at the tail of the force arrow (start point) and second one should at the tip (end point). For example, in the figure 

above, the first point should be M and the second one should be N. It they are chosen in reverse, the direction of the force vector is 

reversed, too. In other words, −�⃗⃗�  is obtained instead of �⃗⃗� . 

 

 

 

 

 

dx=x2-x1 

dz=z2-z1 

dy=y2-y1 �⃗⃗�  



Example 2.6 

Express each of the forces in Cartesian vector form and determine the 

magnitude and coordinate direction angles of the resultant force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.4.5. Dot (Scalar) Product 

The dot product of two vectors �⃗⃗�  and �⃗⃗�  is defined as the product of the magnitudes of A and B and of the cosine of the angle 𝜃 

formed by �⃗⃗�  and �⃗⃗� . The dot product of �⃗⃗�  and �⃗⃗�   is denoted by �⃗⃗� ∙ �⃗⃗�    . 

�⃗⃗� ∙ �⃗⃗� = 𝐴𝐵𝑐𝑜𝑠𝜃    

The result of dot product of two vectors is scalar, therefore dot product is also called 

scalar product. 

 

 

Laws of operation 

i. Commutative law:    �⃗⃗� ∙ �⃗⃗� = �⃗⃗� ∙ �⃗⃗�   

ii. Multiplication by a scalar:   𝑚(�⃗⃗� ∙ �⃗⃗� ) = (𝒎�⃗⃗� ) ∙ �⃗⃗� = �⃗⃗� ∙ (𝑚�⃗⃗� ) 

iii. Distributive law:   𝐂 ∙⃗⃗⃗⃗ (�⃗⃗� + �⃗⃗� ) = 𝐂 ∙ �⃗⃗� + 𝐂 ∙ �⃗⃗�  

 

The dot products of vectors can be expressed in terms of rectangular components. 

( ) ( ) = + +  + +x y z x y zA B A i A j A k B i B j B k   

In dot product of unit vectors is equal to 1 if unit vectors are same and is equal to 0 if unit vectors are different from the definition of 

dot product. Some of these dot products are given as an example.  

 

0 1

90 0

90 0

→  = =

⊥ →  = =

⊥ →  = =

/ / cos

cos

cos

i i i i ii

i j i j ij

i k i k ik

  

  

  

𝜃 



Putting dot products of unit vectors into dot product of �⃗⃗� ∙ �⃗⃗� , the product turns into a very simple expression. 

  = + +x x y y z zA B A B A B A B  

In the particular case when A and B are equal, we note that 

2 2 2 2 = + + = + + =x x y y z z x y zA A A A A A A A A A A A  

 

 

 

Applications 

i. The angle formed between two vectors or intersecting lines 

The dot product of �⃗⃗�  and �⃗⃗�  which have formed by an angle   is given below. 

 = = + +cos x x y y z zA B AB A B A B A B  

If the angle is drawn from this equations,   becomes, 


+ +

=cos
x x y y z zA B A B A B

AB
 

and,   can be calculated from this equality. 

 

 

 



ii. The Projection of a vector on a given line. 

 

Consider a vector �⃗⃗�  forming an angle   with dd line. In the given figure,  𝐀𝒅
⃗⃗⃗⃗  ⃗ is the 

projection of the force on dd line and 𝐮𝒅⃗⃗ ⃗⃗   is the unit vector in the direction of 𝐀𝒅
⃗⃗⃗⃗  ⃗  vector 

on dd line. The projection of �⃗⃗�   on dd line can be calculated using dot product.  

𝐀𝒅
⃗⃗⃗⃗  ⃗  can be obtained by the help of dot product. 

  = = = → =  =cos cos ,d d d d d d d dA u Au A A A A u A A u   

This equality is valid not only in plane (can be easily seen from the figure) but also in 

space. In other words, in order to find the projection of a force on a given line, a dot 

product between the force �⃗⃗�  and a unit vector 𝐮𝒅⃗⃗ ⃗⃗   on the line is adequate. Notice that 

if the result of dot product is positive, then the 𝐀𝒅
⃗⃗⃗⃗  ⃗  has a directional sense which is 

the same as 𝐮𝒅⃗⃗ ⃗⃗  , whereas if the result is a negative scalar, then 𝐀𝒅
⃗⃗⃗⃗  ⃗ has the opposite 

sense of direction to 𝐮𝒅⃗⃗ ⃗⃗  . 

 

 

 

 

 

 

 

 

 

 



Example 2.7 

Find the magnitude of the projected component of the force along the pipe AO. 


