CHAPTER 2. VECTOR FORCES

2.1. Vector

Many physical quantities in engineering mechanics are measured using
either scalars or vectors.
Scalar. A scalar is any positive or negative physical quantity that can be completely specified by its magnitude. Examples of scalar quantities include length, mass, and time. Only one number is required to represent a scalar in any dimensional space.
Vector. A vector is any physical quantity that requires both a magnitude and a direction for its complete description. Examples of vectors encountered in statics are force, position, and moment. A vector requires n number of coordinates to be characterized in a n dimensional space. For example, 3 coordinates are required to define a vector in a 3D.

Vector quantities are represented by simply drawing an arrow above it, $\overrightarrow{\mathbf{A}}$, or a small line under it, $\underline{\mathbf{A}}$. In this course, the vectors will be presented with an arrow above them, such as $\overrightarrow{\mathbf{A}}$. Magnitude of a vector can be expressed simply by vector itself without an arrow, A or the vector representation can be written in a absolute value sign, $|\vec{A}|$

Vectors can be divided into three categories corresponding to their physical representations.
i. Floating Vector (TR: Kayan Vektör) If a vector can move on the line of action from one point to another provided that it maintains its magnitude and direction, it is called floating vector. Force is an example of floating vector in Statics.

Fig. 2.1. Floating vector
Two floating vectors on the same line of action are equal to each other provided that both has same magnitude and direction even if their point of actions are not same.
ii. Free Vector (TR: Serbest Vector) If the line of action does not change the effect of a vector provided that the vector has same magnitude and direction, it can move freely in the space and is called free vector. Moment is an example of free vector in Statics.

Fig. 2.2. Free vector

Two free vectors are equal to each other provided that both has same magnitude and direction.
iii. Fixed Vector (TR: Bağlı Vektör) If not only magnitude and direction but also point of application change the effect of a vector, it is called fixed vector and it position cannot be changed. Force is an example of fixed vector in deformable-body mechanics. Two fixed vectors are equal to each other provided that both has same magnitude, direction and same point of application.

2.2. Vector Operations

2.2.1. Multiplication and Division of a Vector by a Scalar

If a vector is multiplied by a positive scalar, its magnitude is increased by that amount. Multiplying by a negative scalar will also change the directional sense of the vector.

Fig. 2.3. Scalar multiplication and division

2.2.2. Vector Addition

Two vectors can be added using the parallelogram law of addition and obtained resultant vector. Addition procedure:

- First join the tails of the vectors (let's name them as \vec{A} and \vec{B}) at a point O to make them concurrent.
- From the head of first vector, \vec{A}, draw a line parallel to the second vector, \vec{B}.
- Draw another line from the head of \vec{B} that is parallel to \vec{A}.
- These two lines intersect at point P to form the adjacent sides of a parallelogram.
- The diagonal of this parallelogram from O to P forms R , which then represents the resultant vector $\vec{R}=\vec{A}+\vec{B}$.

Fig. 2.4. Addition of two vectors

The order of \vec{A} and \vec{B} does not change the resultant vector. Thus, vector addition is commutative, i.e. $\vec{R}=\vec{A}+\vec{B}=\vec{B}+\vec{A}$.

The magnitude and direction of the resultant can be obtained using sine and cosine theorem.

For the given triangle, cosine theorem can be written as $a^{2}=b^{2}+c^{2}-2 b c \cos A$ whereas sine theorem can be expressed as $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$. Applying these theorems to OPL triangle, following expressions can be obtained.

$$
R=\sqrt{F_{1}^{2}+F_{2}^{2}-2 F_{1} F_{2} \cos (180-\theta)}, \quad \cos (180-\theta)=-\cos \theta
$$

$$
R=\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos (\theta)}
$$

$$
\begin{aligned}
& \frac{R}{\sin (180-\theta)}=\frac{F_{1}}{\sin \alpha}=\frac{F_{2}}{\sin (\theta-\alpha)}, \quad \sin (180-\theta)=\sin \theta \\
& \frac{R}{\sin \theta}=\frac{F_{1}}{\sin \alpha}=\frac{F_{2}}{\sin (\theta-\alpha)}
\end{aligned}
$$

Equations have specific expressions for $\theta=0, \theta=90$ and $\theta=180$.
i. $\theta=0$ (Both vectors have same directions)

$$
\begin{aligned}
& R=\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2}(1)}=F_{1}+F_{2} \\
& \alpha=\tan ^{-1}\left(\frac{F_{1}(0)}{F_{1}(1)+F_{2}}\right)=0
\end{aligned}
$$

If the two vectors have same direction, i.e. $\theta=0$, the resultant force can be algebraic or scalar addition of two vectors and the resultant force is on the same direction with vectors added, i.e. $\alpha=0$.
ii. $\theta=90$ (vectors are perpendicular to each other)

$$
\begin{aligned}
& R=\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2}(0)}=\sqrt{F_{1}^{2}+F_{2}^{2}} \\
& \alpha=\tan ^{-1}\left(\frac{F_{1}(1)}{F_{1}(0)+F_{2}}\right)=\tan ^{-1}\left(\frac{F_{1}}{F_{2}}\right)
\end{aligned}
$$

iii. $\theta=180$ (Vectors have opposite directions)
$R=\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2}(-1)}=F_{1}-F_{2}$
$\alpha=\tan ^{-1}\left(\frac{F_{1}(0)}{F_{1}(-1)+F_{2}}\right)=0$
If the two vectors have opposite direction, i.e. $\theta=180$, the resultant force can be algebraic or scalar subtraction of two vectors and the resultant force is on the same direction with the vector which is the one from the added vectors that has the bigger magnitude, i.e. $\alpha=0$ or $\alpha=180$.

Addition of Several Vectors

If more than two vectors are to be added, successive applications of the parallelogram law can be carried out in order to obtain the resultant force. For example, if three forces $\overrightarrow{\boldsymbol{F}_{1}}, \overrightarrow{\boldsymbol{F}_{2}}$ and $\overrightarrow{\boldsymbol{F}_{3}}$ act at a point 0 , the resultant of any two of the forces is found, say $\overrightarrow{\boldsymbol{F}_{1}}+$ $\overrightarrow{\boldsymbol{F}_{2}}$, and then this resultant is added to the third force, yielding the resultant of all three forces; i.e., $\overrightarrow{\boldsymbol{R}}=\left(\overrightarrow{\boldsymbol{F}_{\mathbf{1}}}+\overrightarrow{\boldsymbol{F}_{\mathbf{2}}}\right)+\overrightarrow{\boldsymbol{F}_{\mathbf{3}}}$. Using the parallelogram law to add more than two forces, as in the example, often requires extensive geometric and trigonometric calculation to determine the numerical values for the magnitude and direction of the resultant. Instead, problems of this type are easily solved by using the rectangular component method which will be explained in this chapter.

2.2.3. Vector Subtraction

The subtraction of two forces (let's name them as $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$) can be expressed as $\overrightarrow{\boldsymbol{R}}=\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}=\overrightarrow{\boldsymbol{A}}+(-\overrightarrow{\boldsymbol{B}})$. Therefore, rules of vector addition can be applied to vector subtraction.

NOTE: Since force is a vector, all the operations can be applied to the forces.

Example 2.1. Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x axis.

Solution:

2.3. Addition of a System of Coplanar Forces

2.3.1. Rectangular Components of a Vector

When a force is resolved into two components perpendicular to each other, e.g. as in a Cartesian coordinate system, the components are then called rectangular components.

$$
\begin{aligned}
& F_{x}=F \cos \theta \text { or } F_{x}=F \sin \beta \\
& F_{y}=F \sin \theta \text { or } F_{x}=F \cos \beta
\end{aligned}
$$

It is also possible to represent the x and y components of a force in terms of Cartesian unit vectors $\vec{\imath}$ and $\vec{\jmath}$. They are called unit vectors because they have a dimensionless magnitude of 1 , and so they can be used to designate the directions of the x and y axes, respectively. Thus, Cartesian vector notation of a vector is given below.

$$
\begin{aligned}
& \overrightarrow{F_{x}}=F_{x} \vec{l}, \quad \overrightarrow{F_{y}}=F_{y} \vec{\jmath} \\
& \vec{F}=\overrightarrow{F_{x}}+\overrightarrow{F_{y}}=F_{x} \vec{\imath}+F_{y} \vec{\jmath}
\end{aligned}
$$

If a vector is given by a slope representation as in the below figure, the rectangular components can be found as follows.

$$
\begin{array}{lll}
a \perp b & \rightarrow & c^{2}=a^{2}+b^{2} \\
\frac{b}{c}=\frac{F_{y}}{F} & \rightarrow & F_{y}=F\left(\frac{b}{c}\right) \\
\frac{a}{c}=\frac{F_{x}}{F} & \rightarrow & F_{x}=F\left(\frac{a}{c}\right)
\end{array}
$$

It must be noted that, the signs of the components should be determined by the direction of the force.

$$
\begin{aligned}
& \overrightarrow{F_{1}}=-F_{1 x} \vec{\imath}+F_{1 y} \vec{\jmath} \\
& \overrightarrow{F_{2}}=-F_{2 x} \vec{\imath}-F_{2 y} \vec{\jmath}
\end{aligned}
$$

2.3.2. Resultant of Coplanar Forces

We can use rectangular components to determine the resultant of several coplanar forces, i.e., forces that all lie in the same plane, e.g. xy plane. To do this, each force is first resolved into its x and y components, and then the respective components are added using scalar algebra since they are collinear. The resultant force is then formed by adding the resultant components using the parallelogram law.

$$
\begin{aligned}
& \overrightarrow{F_{1}}=F_{1 x} \vec{\imath}+F_{1 y} \vec{\jmath} \\
& \overrightarrow{F_{2}}=F_{2 x} \vec{\imath}+F_{2 y} \vec{\jmath} \\
& \overrightarrow{F_{n}}=F_{n x} \vec{\imath}+F_{n y} \vec{\jmath} \\
& \vec{R}=\overrightarrow{F_{1}}+\overrightarrow{F_{2}}+\cdots+\overrightarrow{F_{n}} \\
& \vec{R}=\left(F_{1 x} \vec{\imath}+F_{1 y} \vec{\jmath}\right)+\left(F_{2 x} \vec{\imath}+F_{2 y} \vec{\jmath}\right)+\cdots+\left(F_{n x} \vec{\imath}+F_{n y} \vec{\jmath}\right) \\
& \vec{R}=\left(F_{1 x}+F_{2 x}+\cdots+F_{n x}\right) \vec{\imath}+\left(F_{1 y}+F_{2 y}+\cdots+F_{n y}\right) \vec{\jmath} \\
& \vec{R}=R_{x} \vec{\imath}+R_{y} \vec{\jmath} \\
& R_{x}=\sum_{i=1}^{n} F_{i x}, \quad R_{y}=\sum_{i=1}^{n} F_{i y}
\end{aligned}
$$

Once the components of resultant force are determined, they may be sketched along the x and y axes with their proper sense of direction, and the resultant force can be determined from vector addition.
$R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}$
$\tan \theta=\frac{R_{y}}{R_{x}} \rightarrow \quad \theta=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)$

Resultant Force Problems

i. Resolve all the given forces into their components
ii. Find components of resultant simply using equations, $R_{x}=\sum_{i=1}^{n} F_{i x}, \quad R_{y}=\sum_{i=1}^{n} F_{i y}$
iii. Calculate magnitude and angle of the resultant

Example 2.2

Determine the magnitude and direction of the resultant force.

Example 2.3.

If the resultant force acting on the bracket is required to be a minimum, determine the magnitudes of $\overrightarrow{F_{1}}$ and the resultant force.

2.4. Vectors in Space (3D)

2.4.1. Cartesian Vector Form

The operations of vector algebra, when applied to solving problems in three dimensions (space), are greatly simplified if the vectors are first represented in Cartesian vector form.

We will use a right-handed coordinate system to develop the theory of vector algebra that follows. A rectangular coordinate system is said to be right-handed if the thumb of the right hand points in the direction of the positive z axis when the right-hand fingers are curled about this axis and directed from the positive x towards the positive y axis.

Fig. 2.6. Right-handed coordinate system

A vector, let's name it as \vec{A}, may have three rectangular components along the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinate axes, depending on how the vector is oriented relative to the axes. The components of vector $\overrightarrow{\boldsymbol{A}}$ can be found as $\overrightarrow{\boldsymbol{A}}=\overrightarrow{\boldsymbol{A}_{\boldsymbol{z}}}+\overrightarrow{\boldsymbol{A}^{\prime}}$, then $\overrightarrow{\boldsymbol{A}^{\prime}}$ can be resolved into its components as $\overrightarrow{\boldsymbol{A}^{\prime}}=\overrightarrow{\boldsymbol{A}_{\boldsymbol{x}}}+\overrightarrow{\boldsymbol{A}_{\boldsymbol{y}}}$.
Combining these two equations vector \vec{A} can be represent by three separate components.

$$
\vec{A}=\overrightarrow{A_{x}}+\overrightarrow{A_{y}}+\overrightarrow{A_{z}}
$$

In three dimensions, the set of Cartesian unit vectors, $\overrightarrow{\boldsymbol{\imath}}, \overrightarrow{\boldsymbol{J}}, \overrightarrow{\boldsymbol{k}}$, is used to designate the directions of the x, y, z axes, respectively.

In space, vector $\overrightarrow{\boldsymbol{A}}$ can be shown in Cartesian coordinates as follows (Cartesian Vector Representation).

$$
\vec{A}=A_{x} \vec{\imath}+A_{y} \vec{\jmath}+A_{z} \vec{k}
$$

A vector \vec{A} is given in Cartesian coordinates.

$$
\overrightarrow{\boldsymbol{A}}=A_{x} \overrightarrow{\boldsymbol{\imath}}+A_{y} \overrightarrow{\boldsymbol{\jmath}}+A_{z} \overrightarrow{\boldsymbol{k}}
$$

From the figure at the left, following geometric relations can be written.

$$
\begin{aligned}
& \left(A^{\prime}\right)^{2}=A_{x}^{2}+A_{y}^{2} \\
& A^{2}=\left(A^{\prime}\right)^{2}+A_{z}^{2}
\end{aligned}
$$

Combining these two equations, one can easily get the magnitude of $\overrightarrow{\boldsymbol{A}}$.

$$
|\vec{A}|=A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

2.4.2. Coordinate Direction Angles

For a given vector $\vec{A}=\overrightarrow{A_{x}}+\overrightarrow{A_{y}}+\overrightarrow{A_{z}}$, unit vector in the direction of \vec{A} can be easily obtained simply dividing \vec{A} by its magnitude.
$\overrightarrow{\boldsymbol{u}_{\boldsymbol{A}}}=\frac{\overrightarrow{\boldsymbol{A}}}{|\overrightarrow{\boldsymbol{A}}|}=\frac{A_{x}}{A} \overrightarrow{\boldsymbol{i}}+\frac{A_{y}}{A} \overrightarrow{\boldsymbol{\jmath}}+\frac{A_{z}}{A} \overrightarrow{\boldsymbol{k}}$

Before looking coordinate direction angles in space, let's focus on a vector in a plane.

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}=\overrightarrow{\boldsymbol{A}_{\boldsymbol{x}}}+\overrightarrow{\boldsymbol{A}_{\boldsymbol{y}}} \\
& \overrightarrow{\boldsymbol{A}}=A_{x} \overrightarrow{\boldsymbol{\imath}}+A_{y} \overrightarrow{\boldsymbol{\jmath}}
\end{aligned}
$$

Let's define a unit vector $\overrightarrow{\boldsymbol{u}_{\boldsymbol{A}}}$ in the direction of $\overrightarrow{\boldsymbol{A}}$.
$\overrightarrow{\boldsymbol{u}_{\boldsymbol{A}}}=\frac{\overrightarrow{\boldsymbol{A}}}{|\overrightarrow{\boldsymbol{A}}|}=\frac{A_{x}}{A} \overrightarrow{\boldsymbol{i}}+\frac{A_{y}}{A} \overrightarrow{\boldsymbol{J}}$
It is also known that, $A_{x}=A \cos \theta$ and $A_{y}=A \cos \beta$. Putting these equations into unit vector expression, following equations can be written.

$$
\overrightarrow{\boldsymbol{u}_{\boldsymbol{A}}}=\frac{\overrightarrow{\boldsymbol{A}}}{|\overrightarrow{\boldsymbol{A}}|}=\frac{A_{x}}{A} \overrightarrow{\boldsymbol{\imath}}+\frac{A_{y}}{A} \overrightarrow{\boldsymbol{\jmath}}=\frac{A \cos \theta}{A} \overrightarrow{\boldsymbol{\imath}}+\frac{A \cos \beta}{A} \overrightarrow{\boldsymbol{\jmath}}=\cos \theta \overrightarrow{\boldsymbol{\imath}}+\cos \beta \overrightarrow{\boldsymbol{\jmath}}
$$

The unit vector in the direction of $\overrightarrow{\boldsymbol{A}}$ is obtained in terms of angles θ and β measured between the tail of A and the positive x, y axes, respectively. These angles which are used to define the direction of a vector are called coordinate direction angles, which are θ and β in the above example.

The magnitude of a unit vector equals one and then from the above equation an important relation among the direction cosines can be formulated.

$$
\left|\overrightarrow{u_{A}}\right|=u_{A}=\sqrt{\cos ^{2} \theta+\cos ^{2} \beta}=1 \quad \rightarrow \quad \cos ^{2} \theta+\cos ^{2} \beta=1
$$

This equality states that only one coordinate direction angle is adequate to define the direction of the vector. The second angle can be easily found using this equation.

If these principles applied to a vector $\overrightarrow{\boldsymbol{A}}$ in a space, coordinate direction angles can easily be found.

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}=\overrightarrow{\boldsymbol{A}_{x}}+\overrightarrow{\boldsymbol{A}_{y}}+\overrightarrow{\boldsymbol{A}_{\boldsymbol{z}}} \\
& \overrightarrow{\boldsymbol{u}_{\boldsymbol{A}}}=\frac{\overrightarrow{\boldsymbol{A}}}{|\overrightarrow{\boldsymbol{A}}|}=\frac{A_{x}}{A} \overrightarrow{\boldsymbol{i}}+\frac{A_{y}}{A} \overrightarrow{\boldsymbol{\jmath}}+\frac{A_{z}}{A} \overrightarrow{\boldsymbol{k}} \\
&=\cos \alpha \overrightarrow{\boldsymbol{\imath}}+\cos \beta \overrightarrow{\boldsymbol{\jmath}}++\cos \gamma \overrightarrow{\boldsymbol{k}} \\
& \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
\end{aligned}
$$

If only two of the coordinate angles are known, the third angle can be found using this equation. (All angles are measured from the positive sense of the axis.)

Transverse and Azimuth Angles

Sometimes, the direction of a vector \vec{A} can be specified using two angles, namely, a transverse angle θ, and an azimuth angle ϕ (phi), such as in the below figure. The components of \vec{A} can then be determined by applying trigonometry.

$$
\begin{aligned}
& A_{z}=A \cos \phi \\
& A^{\prime}=A \cos (90-\phi)=A \sin \phi \\
& A_{x}=A^{\prime} \cos \theta=A \cos \theta \sin \phi \\
& A_{y}=A^{\prime} \cos (90-\theta)=A \sin \theta \sin \phi
\end{aligned}
$$

Thus, \vec{A} can be written as follows.

$$
\vec{A}=A \cos \theta \sin \phi \vec{i}+A \sin \theta \sin \phi \vec{j}+A \cos \phi \vec{k}
$$

2.4.3. Addition of Vectors in Space

Parallelogram theorem is valid for vectors in space. However, it is complicated and time consuming. Instead of this theorem, using rectangular components in Cartesian coordinates greatly simplifies the addition of two or more vectors as in the coplanar vectors.
Similar to addition of coplanar vectors (Section 2.3.2), the resultant of $\overrightarrow{F_{1}}, \overrightarrow{F_{2}}, \ldots, \overrightarrow{F_{n}}$ can be obtained as below.

$$
\begin{aligned}
& \vec{R}=\overrightarrow{F_{1}}+\overrightarrow{F_{2}}+\cdots+\overrightarrow{F_{n}} \\
& \vec{R}=\left(F_{1 x} \vec{\imath}+F_{1 y} \vec{\jmath}+F_{1 z} \vec{k}\right)+\left(F_{2 x} \vec{\imath}+F_{2 y} \vec{\jmath}+F_{2 z} \vec{k}\right)+\cdots+F\left(n x \vec{\imath}+F_{n y} \vec{\jmath}+F_{n z} \vec{k}\right) \\
& \vec{R}=\left(F_{1 x}+F_{2 x}+\cdots+F_{n x}\right) \vec{\imath}+\left(F_{1 y}+F_{2 y}+\cdots+F_{n y}\right) \vec{\jmath}+\left(F_{1 z}+F_{2 z}+\cdots+F_{n z}\right) \vec{k} \\
& \vec{R}=R_{x} \vec{\imath}+R_{y} \vec{\jmath}+R_{z} \vec{k} \\
& R_{x}=\sum_{i=1}^{n} F_{i x}, \quad R_{y}=\sum_{i=1}^{n} F_{i y}, \quad R_{z}=\sum_{i=1}^{n} F_{i z}
\end{aligned}
$$

Resultant Force Problems

i. Resolve all the given forces into their components
ii. Find components of resultant simply using equation, $R_{x}=\sum_{i=1}^{n} F_{i x}, \quad R_{y}=\sum_{i=1}^{n} F_{i y}$
iii. Calculate magnitude and angle of the resultant

Example 2.4.

Express the force as a Cartesian vector.

Example 2.5

Determine the magnitude and coordinate direction angles of the resultant force, and sketch this vector on the coordinate system.

2.4.4. Force Vector Directed Along a Line

In many applications, the direction of a force $\overrightarrow{\boldsymbol{F}}$ is defined by the coordinates of two points, $M\left(x_{1}, y_{1}, z_{1}\right)$ and $N\left(x_{2}, y_{2}, z_{2}\right)$, located on its line of action as in the figure below.

Consider $\overrightarrow{\boldsymbol{M N}}$ vector which is on the same line of action with force vector $\overrightarrow{\boldsymbol{F}}$.

$$
\overrightarrow{\boldsymbol{M} \boldsymbol{N}}=d x \vec{\imath}+d y \vec{\jmath}+d z \vec{k}
$$

The magnitude of $\overrightarrow{M N}, M N$ equals the distance between point M and N.

$$
\begin{aligned}
& |\overrightarrow{\boldsymbol{M} \boldsymbol{N}}|=M N=d=\sqrt{d x^{2}+d y^{2}+d z^{2}} \\
& \overrightarrow{\boldsymbol{u}}=\frac{\overrightarrow{\boldsymbol{M} \boldsymbol{N}}}{M N}=\frac{d x}{d} \overrightarrow{\boldsymbol{\imath}}+\frac{d y}{d} \overrightarrow{\boldsymbol{\jmath}}+\frac{d z}{d} \overrightarrow{\boldsymbol{k}}
\end{aligned}
$$

Since $\overrightarrow{\boldsymbol{u}}$ is a unit vector in the direction of $\overrightarrow{\boldsymbol{F}}, \overrightarrow{\boldsymbol{F}}$ can be expressed in terms of $\overrightarrow{\boldsymbol{u}}$ as simply multiplying the magnitude of $\overrightarrow{\boldsymbol{F}}$ with $\overrightarrow{\boldsymbol{u}}$, $\overrightarrow{\boldsymbol{F}}=F \overrightarrow{\boldsymbol{u}}$.

It should be noted that it is important to select the first and second point in order to form a unit vector in the direction of $\overrightarrow{\boldsymbol{F}}$. The first point should be at the tail of the force arrow (start point) and second one should at the tip (end point). For example, in the figure above, the first point should be M and the second one should be N. It they are chosen in reverse, the direction of the force vector is reversed, too. In other words, $-\overrightarrow{\boldsymbol{F}}$ is obtained instead of $\overrightarrow{\boldsymbol{F}}$.

Example 2.6

Express each of the forces in Cartesian vector form and determine the magnitude and coordinate direction angles of the resultant force.

2.4.5. Dot (Scalar) Product

The dot product of two vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ is defined as the product of the magnitudes of A and B and of the cosine of the angle θ formed by $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$. The dot product of $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ is denoted by $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$.

$$
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B \cos \theta
$$

The result of dot product of two vectors is scalar, therefore dot product is also called scalar product.

Laws of operation

i. Commutative law: $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\boldsymbol{B}}=\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\boldsymbol{A}}$
ii. Multiplication by a scalar: $m(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\boldsymbol{B}})=(\boldsymbol{m} \overrightarrow{\boldsymbol{A}}) \cdot \overrightarrow{\boldsymbol{B}}=\overrightarrow{\mathbf{A}} \cdot(m \overrightarrow{\boldsymbol{B}})$
iii. Distributive law: $\overrightarrow{\mathbf{C}} \cdot(\overrightarrow{\mathbf{A}}+\overrightarrow{\boldsymbol{B}})=\overrightarrow{\mathbf{C}} \cdot \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{C}} \cdot \overrightarrow{\mathbf{B}}$

The dot products of vectors can be expressed in terms of rectangular components.
$\vec{A} \cdot \vec{B}=\left(A_{x} \vec{i}+A_{y} \vec{j}+A_{z} \vec{k}\right) \cdot\left(B_{x} \vec{i}+B_{y} \vec{j}+B_{z} \vec{k}\right)$
In dot product of unit vectors is equal to 1 if unit vectors are same and is equal to 0 if unit vectors are different from the definition of dot product. Some of these dot products are given as an example.

$$
\begin{array}{lll}
\vec{i} / / \vec{i} & \rightarrow & \vec{i} \cdot \vec{i}=i i \cos 0=1 \\
\vec{i} \perp \vec{j} & \rightarrow & \vec{i} \cdot \vec{j}=i j \cos 90=0 \\
\vec{i} \perp \vec{k} & \rightarrow & \vec{i} \cdot \vec{k}=i k \cos 90=0
\end{array}
$$

Putting dot products of unit vectors into dot product of $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$, the product turns into a very simple expression.

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

In the particular case when A and B are equal, we note that

$$
\vec{A} \cdot \vec{A}=A_{x} A_{x}+A_{y} A_{y}+A_{z} A_{z}=A_{x}^{2}+A_{y}^{2}+A_{z}^{2}=A^{2}
$$

Applications

i. The angle formed between two vectors or intersecting lines

The dot product of $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ which have formed by an angle θ is given below.
$\vec{A} \cdot \vec{B}=A B \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
If the angle is drawn from this equations, θ becomes,
$\cos \theta=\frac{A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}}{A B}$
and, θ can be calculated from this equality

ii. The Projection of a vector on a given line.

Consider a vector $\overrightarrow{\mathbf{A}}$ forming an angle θ with $d d$ line. In the given figure, $\overrightarrow{\mathbf{A}_{d}}$ is the projection of the force on $d d$ line and $\overrightarrow{\mathbf{u}_{\boldsymbol{d}}}$ is the unit vector in the direction of $\overrightarrow{\boldsymbol{A}_{\boldsymbol{d}}}$ vector on $d d$ line. The projection of $\overrightarrow{\mathbf{A}}$ on dd line can be calculated using dot product.
$\overrightarrow{\mathbf{A}_{\boldsymbol{d}}}$ can be obtained by the help of dot product.

$$
\vec{A} \cdot \overrightarrow{u_{d}}=A u_{d} \cos \theta=A \cos \theta=A_{d} \quad \rightarrow \quad A_{d}=\vec{A} \cdot \overrightarrow{u_{d}} \quad, \quad \overrightarrow{A_{d}}=A_{d} \overrightarrow{u_{d}}
$$

This equality is valid not only in plane (can be easily seen from the figure) but also in space. In other words, in order to find the projection of a force on a given line, a dot product between the force $\overrightarrow{\mathrm{A}}$ and a unit vector $\overrightarrow{\mathbf{u}_{d}}$ on the line is adequate. Notice that if the result of dot product is positive, then the $\overrightarrow{\mathbf{A}_{\boldsymbol{d}}}$ has a directional sense which is the same as $\overrightarrow{\mathbf{u}_{\boldsymbol{d}}}$, whereas if the result is a negative scalar, then $\overrightarrow{\mathbf{A}_{\boldsymbol{d}}}$ has the opposite sense of direction to $\overrightarrow{\mathbf{u}_{\boldsymbol{d}}}$.

Example 2.7

Find the magnitude of the projected component of the force along the pipe $A O$.

