| PS 2-3 | K.T.U. <br> DEPARTMENT of CIVIL ENGINEERING <br> STATICS PROBLEM SET 2-3 |
| :---: | :---: |
| The block has a mass of 5 kg and rests on the smooth |  |
| plane. Determine the unstretched length of the spring. |  |

2


The unstretched length of spring $A B$ is 3 m . If the block is held in the equilibrium position shown, determine the mass of the block at $D$.


Determine the maximum mass of the lamp that the cord system can support so that no single cord develops a tension exceeding 400 N .

The ball $D$ has a mass of 20 kg . If a force of $F=100 \mathrm{~N}$ is applied horizontally to the ring at $A$, determine the dimension $d$ so that the force in cable $A C$ is zero.

5


Determine the force in each cable needed to suppor the $20-\mathrm{kg}$ flowerpot.


$\vec{F}_{1}, \ldots, \vec{F}_{8}$ and $\vec{M}_{1}, \ldots, \vec{M}_{4} \quad$ are applied to the end of a cantilever beam as shown in the figure. (All forces and couple moments are parallel to one of the $x, y$ or $z$ axis.)
a) Replace $\vec{F}_{1}, \ldots, \vec{F}_{8}$ and $\vec{M}_{1}, \ldots, \vec{M}_{4}$ with an an equivalent resultant force and resultant couple moment at the center of the crosssection (G).
b) What are the coordinate direction angles ( $\alpha, \beta$ and $\theta$ ) of the resultant force.

| $\boldsymbol{F}_{\mathbf{1}}$ | $\boldsymbol{F}_{\mathbf{2}}$ | $\boldsymbol{F}_{\mathbf{3}}$ | $\boldsymbol{F}_{\mathbf{4}}$ | $\boldsymbol{F}_{\mathbf{5}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 150 N | 0 | 0 | 0 | 200 N |
| $\boldsymbol{F}_{\mathbf{6}}$ | $\boldsymbol{F}_{\mathbf{7}}$ | $\boldsymbol{F}_{\mathbf{8}}$ | $\boldsymbol{M}_{\mathbf{1}}$ | $\boldsymbol{M}_{\mathbf{2}}$ |
| 0 | 0 | 200 N | 100 Nm | 200 Nm |


| $\boldsymbol{M}_{\mathbf{3}}$ | $\boldsymbol{M}_{\mathbf{4}}$ | $\mathbf{b}(\mathbf{m})$ | $\mathbf{h}(\mathbf{m})$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 180 Nm | 0 | 0.4 m | 0.6 m |



Replace the loading system by an equivalent resultant force and couple moment acting at point $A$.

Replace system of forces and couple moment system by
a) a resultant force and a resultant couple moment at A.
b) a equivalent resultant force and specify where the resultant's line of action intersects the body measured from A horizontally and vertically. (Assume $A$ is the origin of the coordinate system)



Concentrated forces $\vec{F}_{1}$ and $\vec{F}_{2}$, couple moments $\vec{M}_{1}$ and $\quad \vec{M}_{2}$, a triangular and a rectangular distributed loads perpendicular to the member are applied to the system as in the given figure. The stiffness of spring at H is $\boldsymbol{k}$.
a) Find the support reactions at $A$ and the force in the spring at $H$.
b) If the stiffness of the spring is $\boldsymbol{k}$, find the upstretched length of the spring $\boldsymbol{l}_{\mathbf{0}}$.

| $F_{1}$ | $F_{2}$ | $M_{1}$ | $M_{2}$ | $q_{1}$ | $q_{2}$ | $k$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 N | 300 N | 700 <br> Nm | 800 <br> Nm | 100 <br> $N / m$ | 80 <br> $N / m$ | 1.8 <br> $\mathrm{kN} / \mathrm{m}$ |




Replace the two wrenches and the force, actin on the pipe assembly, by an equivalent resultant force an couple moment at point $O$.


Concentrated forces $\vec{F}_{1}, \ldots, \vec{F}_{6}$ and couple moments $\vec{M}_{1}, \ldots, \vec{M}_{6}$ are applied to a rigid plate ( ABCD ). The plate supported by a ball and socket at A and three rigid weightless link at $\mathrm{B}, \mathrm{C}$ and D which are parallel to $\mathrm{x}, \mathrm{z}$ and y axis, respectively. All the forces and couple moments are parallel to one of the $\mathrm{x}, \mathrm{y}$ or z axis. Find all the support reactions and forces in the weightless links.

| $\boldsymbol{F}_{\mathbf{1}}$ | $\boldsymbol{F}_{\mathbf{2}}$ | $\boldsymbol{F}_{\mathbf{3}}$ | $\boldsymbol{F}_{\mathbf{4}}$ | $\boldsymbol{F}_{\mathbf{5}}$ | $\boldsymbol{F}_{\mathbf{6}}$ | $\boldsymbol{M}_{\mathbf{1}}$ | $\boldsymbol{M}_{\mathbf{2}}$ | $\boldsymbol{M}_{\mathbf{3}}$ | $\boldsymbol{M}_{\mathbf{4}}$ | $\boldsymbol{M}_{\mathbf{5}}$ | $\boldsymbol{M}_{\mathbf{6}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(\boldsymbol{N})$ | $(\boldsymbol{N})$ | $(\boldsymbol{N})$ | $(\boldsymbol{N})$ | $(\boldsymbol{N})$ | $\mathbf{( \boldsymbol { N } )}$ | $(\boldsymbol{N} . \boldsymbol{m})$ |
| 100 | 0 | 250 | 0 | 0 | 200 | 100 | 0 | 0 | 100 | 300 | 0 |



The bulk head $A D$ is subjected to both water and soil-backfill pressures. Assuming $A D$ is "pinned" to the ground at $A$, determine the horizontal and vertical reactions there and also the required tension in the ground anchor $B C$ necessary for equilibrium. The bulk head has a mass of 800 kg .

~.. The man has a weight $W$ and stands at the center of the plank. If the planes at $A$ and $B$ are smooth, determine the tension in the cord in terms of $W$ and $\theta$.


The boom is intended to support two vertical loads, $\mathbf{F}_{1}$ and $\mathbf{F}_{2}$. If the cable $C B$ can sustain a maximum load of 1500 N before it fails, determine the critical loads if $F_{1}=2 F_{2}$. Also, what is the magnitude of the maximum reaction at pin $A$ ?

The $30-\mathrm{N}$ uniform rod has a length of $l=1 \mathrm{~m}$. If $s=1.5 \mathrm{~m}$, determine the distance $h$ of placement at the end $A$ along the smooth wall for equilibrium.

$\vec{F}$, a triangular distributed load and couple moments $M_{1}, \ldots, M_{6} \quad$ are applied a rigid frame structure which has a fixed support at $A$. Distributed load is in the negative z direction and couple moments are parallel to one of the $x, y$ or $z$ axis. All members of the frame structure are rigidly connected and parallel to one of the $x, y$ or $z$ axis. Find the support reactions. (Neglect the dimensions of the frame members)

| $\begin{gathered} F \\ (N) \end{gathered}$ | $\begin{gathered} M_{1} \\ (N m) \\ \hline \end{gathered}$ | $\begin{gathered} M_{2} \\ (N m) \\ \hline \end{gathered}$ | $\begin{gathered} M_{3} \\ (N m) \\ \hline \end{gathered}$ | $\begin{gathered} M_{4} \\ (\boldsymbol{N m}) \\ \hline \end{gathered}$ | $\begin{gathered} M_{5} \\ (\mathbf{N m}) \end{gathered}$ | $\begin{gathered} M_{6} \\ (N m) \end{gathered}$ | $\begin{gathered} q \\ (N / m) \end{gathered}$ | $\begin{gathered} \boldsymbol{\beta} \\ (\mathrm{deg}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 100 | 0 | 150 | 0 | 200 | 0 | 50 | 50 |
| $\begin{gathered} \boldsymbol{\theta} \\ (\mathrm{deg}) \end{gathered}$ | $\stackrel{\varphi}{(\mathrm{deg})}$ | $\begin{gathered} a \\ (\mathbf{m}) \\ \hline \end{gathered}$ | $\begin{gathered} b \\ (\mathbf{m}) \end{gathered}$ | $\begin{gathered} \boldsymbol{c} \\ (\boldsymbol{m}) \\ \hline \end{gathered}$ | $\begin{gathered} \boldsymbol{d} \\ (\boldsymbol{m}) \end{gathered}$ | $\begin{gathered} e \\ (m) \\ \hline \end{gathered}$ |  |  |
| 60 | 70 | 2 | 2 | 3 | 2 | 3 |  |  |



The bent rod is supported at $A, B$, and $C$ by smooth journal bearings. Determine the components of reaction at the bearings if the rod is subjected to the force $F=800 \mathrm{~N}$. The bearings are in proper alignment and exert only force reactions on the rod.


The sign has a mass of 100 kg with center of mass at $G$. Determine the $x, y, z$ components of reaction at the ball-and-socket joint $A$ and the tension in wires $B C$ and $B D$.

25


The uniform concrete slab has a mass of 2400 kg . Determine the tension in each of the three parallel supporting cables when the slab is held in the horizontal plane as shown.

## 26

Determine the magnitude of $\overrightarrow{\boldsymbol{F}}_{\mathbf{3}}$ so that the resultant force $\overrightarrow{\boldsymbol{R}}$ is directed upwards vertically.


27
Find the angle in degrees between $\vec{F}_{1}$ and $\vec{F}_{2}$.


If the spring has an unstretched length of 1 m , determine the final length of the spring in meter after loading.


Find the resultant moment of the force system and the concentrated moment about O .

NOTE: consider counterclockwise (CCW) moments are positive (+) and write your answer according to this sign vonvention.


Find the magnitude of moment of $\overrightarrow{\boldsymbol{F}}$ about point $O$.


Determine the maximum load $\boldsymbol{Q}$ in $k N$ that can be applied to the truss structure so that the member force of AB remains tension.


Determine the support reactions at the smooth journal bearings $\mathrm{A}, \mathrm{B}$, and C of the pipe assembly.
Note: Only consider forces at the bearings
(do not consider moments at bearings)
Sign Convention: If a support reaction is in the direction of axis, its sign is positive (+), otherwise negative (-)


