Pr \#1

Cylinders A and B, that have masses of $m A=10 \mathrm{~kg}$ ve $m B=20$ $k g$, have been supported by a force $\overrightarrow{\boldsymbol{F}}$. Find the magnitude of the force and the reaction forces on the surfaces.
(All surfaces are frictionless)

Pr \#2
The 600 N box is placed on a smooth bed of the dump truck by the rope $A B$.
a) If $\propto=25^{\circ}$, what is the tension in the rope?
b) If the rope will safely support of tension 400 N , what is the maximum allowable value of α ?

Pr \#3

$\vec{F} \quad$ is applied to the ring at O which has supported by the cables $O A, O B$ and $O C$ as shown in the figure.
a) Write \vec{F} and cable forces in Cartesian vector notation.

(10p)

b) Determine the force developed in each cable. ($8 \boldsymbol{p}$)
c) What is the angle between cables $O A$ and $O B$. ($4 p$)
d) Determine the magnitude of the projected component of \vec{F}
 along the cable $O B$. (3p)
[PLO:1,2]

Choose your values from the Table 2 according to your group, fill your values to the bottom table and solve the problem using your values.

Group	F	$\alpha(a l f a)$	\emptyset	a	b	k	m	n

Group Criteria : The last two digits of the student number is between the first (included) and the second number (included). For example, if the student number is $\mathbf{3 8 3 1 9 8}$ (last two digits are 98), corresponding group is 95-99.

Table 2. Values for problem 2.

Group	\boldsymbol{F}	$\boldsymbol{\alpha}(\boldsymbol{a l f a})$	\varnothing	\boldsymbol{a}	\boldsymbol{b}	\mathbf{K}	\mathbf{M}	\mathbf{N}
$\mathbf{0 0 - 0 4}$	500 N	25°	70°	3	4	3 m	4 m	5 m
$\mathbf{0 5 - 0 9}$	600 N	30°	65°	5	12	4 m	3 m	5 m
$\mathbf{1 0 - 1 4}$	700 N	35°	60°	7	24	3 m	5 m	4 m
$\mathbf{1 5 - 1 9}$	800 N	40°	55°	8	15	4 m	5 m	3 m
$\mathbf{2 0 - 2 4}$	900 N	45°	50°	3	4	5 m	3 m	4 m
$\mathbf{2 5 - 2 9}$	400 N	50°	45°	5	12	5 m	4 m	3 m
$\mathbf{3 0 - 3 4}$	500 N	55°	40°	7	24	3 m	4 m	6 m
$\mathbf{3 5 - 3 9}$	600 N	60°	35°	8	15	3 m	6 m	4 m
$\mathbf{4 0 - 4 4}$	700 N	65°	30°	3	4	4 m	3 m	6 m
$\mathbf{4 5 - 4 9}$	800 N	70°	25°	5	12	4 m	5 m	6 m
$\mathbf{5 0 - 5 4}$	900 N	25°	70°	7	24	5 m	3 m	6 m
$\mathbf{5 5 - 5 9}$	400 N	30°	65°	8	15	5 m	6 m	3 m

The 200 kg slider at A is held in place on the smooth vertical bar by the cable AB. Determine the tension in the cable and the force exerted on the slider by the bar.

