

MINE 1000 DYNAMICS

2019 - 2020 Spring
 Exercises (Particle Dynamics) 27/04/2020

Dr. Serdar Yaşar

Course Outline

Week	Date	Course Content
1		Warming up, general introduction to dynamics
2		Kinematics of a particle
3		Kinematics of a particle
4		Kinetics of a particle: Force \& acceleration
5		Kinetics of a particle: Work \& energy
6		Kinetics of a particle: Impulse \& momentum
7		Kinematics of a rigid body
9		Kinematics of a rigid body
10		Kinetics of a rigid body: Work \& energy
11		Kinetics of a rigid body: Impulse \& momentum
12		General review \& problem solving
13		
14		

Traveling with an initial speed of $70 \mathrm{~km} / \mathrm{h}$, a car accelerates at 6000 $\mathrm{km} / \mathbf{h}^{2}$ along a straight road. How long will it take to reach a speed of 120 km/h? Also, through what distance does the car travel during this time?

Kinematics (rectilinear motion)

Exercise 1:

$$
\begin{aligned}
& V=v_{0}+a_{c} t \\
& 120=70+\left(60(00)(t) t=8.33\left(10^{-3}\right)\right. \\
& v^{2}=v_{0}^{2}+2 a_{c}\left(s-s_{0}\right) \\
& 12^{2}=70^{2}+2 \cdot(6000)(s-0) \\
& S=\frac{0.792 \mathrm{~km}}{272 \mathrm{~m}}
\end{aligned}
$$

Exercise 2:

A particle is moving along a straight line with an initial velocity of 6 m / s when it is subjected to a deceleration of $a=\left(-1.5 \mathrm{v}^{1 / 2}\right) \mathrm{m} / \mathrm{s}^{2}$, where v is in m / s. Determine how far it travels before it stops. How much time does this take?

Kinematics (rectilinear motion)

Exercise 2:

$$
\begin{aligned}
& V=0 \rightarrow S=-0 . c_{1}, 1,(0)^{5 / 2}+6.532=6.53 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Exercise } 2: d v \rightarrow \int_{0}^{d} d t=-\int_{0}^{v} \frac{d v}{1.5 v^{1 / 2}} \\
& t=-\left.1.33\left(v^{1 / 2}\right)\right|_{0} ^{v}=\left(3.266-1.333 v^{1 / 2}\right) \\
& v=0 \quad t=(3266-1.337 .101) \\
& t=3.275
\end{aligned}
$$

Exercise 3:

The race car starts from rest and travels along a straight road until it reaches a speed of $26 \mathrm{~m} / \mathrm{s}$ in 8 s as shown on the v-t graph. The flat part of the graph is caused by shifting gears. Draw the a-t graph and determine the maximum acceleration of the car.

Exercise 3:

(s)

$$
4 \leqslant t<5
$$

$$
a=\frac{\Delta v}{\Delta t}=\frac{0}{1}=0
$$

$$
\begin{aligned}
& 0 \leqslant t<L_{1} s \\
& a=\frac{\Delta v}{\Delta t}=\frac{1 l_{1}}{4} \\
& a=3.5 \mathrm{~m} / \mathrm{s}^{2} \\
& s \leqslant+<8 \\
& a=\frac{\Delta v}{b t}=\frac{26-1 l_{1}}{8-5}=4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Exercise 4:

If the velocity of a particle is defined as $v(t)=0.8 t^{2} i+12 t^{1 / 2} j+5 k m / s$, determine the magnitude and coordinate direction angles α, β, y of the particle's acceleration when $t=2 s$.

Kinematics (curvilinear motion)

$$
\begin{aligned}
& V=\frac{0.8 t^{2} i}{x}+\frac{12 t^{1 / 2} j}{y}+\frac{\int_{\beta} i}{z} \\
& a=\frac{d v}{d t}=1.6 t i+6 t^{1 / 2} j \\
& t=2 s-1 a=3.2 i+4.2(5) j
\end{aligned}
$$

$$
\begin{aligned}
& \text { Exercise 4: } \\
& \bar{a}=\sqrt{\left.\left.(3.2)^{2}+i 4.24\right)\right)^{2}}=5.31 \mathrm{~m} / \mathrm{s}^{2} \\
& \hat{a}=u_{n}=\frac{a}{\bar{a}}=\frac{3.2 i+4.243 j}{5.31} \\
& \begin{aligned}
x & =\operatorname{coj}^{17}(0.602)^{a} \quad \hat{a}=\frac{5.31}{a .6022 i+0.7584, i} \\
& =\left(33^{\circ}\right.
\end{aligned} \\
& \begin{aligned}
& =\left(05^{-1}(0.7584)\right. \\
& =\left(8,7^{\circ}\right)
\end{aligned}
\end{aligned}
$$

Exercise 5:

The velocity of a particle is $\mathbf{v}=3 i+(6-2 \mathrm{t}) \mathrm{j} \mathrm{m} / \mathrm{s}$, where t is in seconds. If $r=0$ when $t=0$, determine the displacement of the particle during the time interval $\mathrm{t}=1 \mathrm{~s}$ to $\mathrm{t}=\mathbf{3} \mathrm{s}$.

Kinematics (curvilinear motion)

$$
\begin{aligned}
& \text { Exercise 5: }(6-2 t) j \quad V=\frac{d r}{d t} d r=v i t \\
& \int_{0}^{1} d r=\int_{0}^{t} 3 i+(6-2 t) j d t \\
& r=\left(3 t i+\left(6 t-t^{2}\right) j\right) m
\end{aligned}
$$

Exercise 5:

$$
\begin{aligned}
& t=1 s \rightarrow r_{1}=3 i+5 j \mathrm{~m} \\
& t=3 s \rightarrow r_{3}=9 i+9 j m \\
& \Delta r= r_{3}-r_{1}=9 i+5 j-3 i-5 j \\
& \Delta r=6 i+1 j m
\end{aligned}
$$

Exercise 6:

The roller coaster car travels down the helical path at constant speed such that the parametric equations that define its position are $x=c$ sinkt, $\mathrm{y}=\mathrm{c}$ coskt, $\mathrm{z}=\mathrm{h}$-bt, where c, h, and b are constants. Determine the magnitudes of its velocity and acceleration.

$$
\begin{aligned}
& \text { Exercise 6: } \\
& x=c \sin k t \quad \dot{x}=c k \cos k t \quad \ddot{x}=-c k^{2} \sin k t \\
& y=c \cos k t \quad \dot{y}=-c k \sin k t \quad \ddot{y}=-c k^{2} \cos k t \\
& z=h-b t \quad \dot{z}=-b \quad \ddot{z}=0 \\
& v=\sqrt{(k k+o s k t)^{2}+(-c k \sin k+)^{2}+(-b)^{2}} \\
& =\sqrt{\left(c^{2}-k^{2}+b^{2}\right.}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Exercise 6: } & \dot{x}=c k \cos k t \ddot{x}=-c k^{2} \sin k t \\
x=c \sin k t & \ddot{y}=c \cos k t \\
y=c \cos k t \\
z=h-b t \quad \ddot{y}=-b \\
a=\sqrt{\left(-\left(k^{2} \sin k-t\right)^{2}+\left(-c k^{2}(\cos k t)^{2}+0^{2}\right.\right.} \\
a=c k^{2}
\end{array}
$$

Exercise 7:

If the coefficient of kinetic friction between the $50-\mathrm{kg}$ crate and the ground is $\mu \mathrm{k}=0.3$, determine the distance the crate travels and its velocity when $t=3 \mathrm{~s}$. The crate starts from rest, and $P=200 \mathrm{~N}$.

Kinetics (force \& acceleration)

Exercise 7:

$$
\begin{aligned}
& \uparrow \sum f_{y}=m a_{y}=0 \\
& N-50 .(5.81)+200 S_{n} 30=0 \\
& \mathrm{~N}=350.5 \mathrm{~N} \\
& \rightarrow\left\{F_{x}=\max 200\left(0330-0.3(390.5)-5 \mathrm{Oa}_{a}\right.\right. \\
& a=1.121 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Exercise 7:

$$
\begin{aligned}
& v=v_{0}+a_{1} t \\
& v=0+1.21(3)=3.36 \mathrm{~m} / \mathrm{s} \\
& s=S_{0}+v_{0} t+1 / 2 a, t^{2} \\
& S=0+0+1 / 2(1.121)(3)^{2}=5.04 \mathrm{~m}
\end{aligned}
$$

© (®) ra

Exercise 8:

Determine the acceleration of the blocks when the system is released. The coefficient of kinetic friction is $\mu \mathrm{k}$, and the mass of each block is m . Neglect the mass of the pulleys and cord.

Kinetics (force \& acceleration)

Karadeniz Technical University-Mining Engineering Department / Dynamics Course / Spring 2020

Exercise 8:

$$
\begin{aligned}
&+\uparrow \sum F_{y}=m a \\
& T-i n g=-m a \\
& A
\end{aligned}
$$

Exercise 8:

$$
\begin{aligned}
& a=\frac{1}{2}\left(1-\mu_{k}\right) g \\
& T=\frac{1}{2}(1+\mu k) m g
\end{aligned}
$$

Exercise 9:

The coefficient of static friction between the $200-\mathrm{kg}$ crate and the flat bed of the truck is $\mu \mathrm{k}=0.3$. Determine the shortest time for the truck to reach a speed of 60 km h , starting from rest with constant acceleration, so that the crate does not slip.

Exercise 9:

$$
\begin{aligned}
& V=V_{0}+a_{c} t \\
& 16.67=0+2.965 t \\
& t=5.16 \mathrm{~s}
\end{aligned}
$$

$$
V=60 \mathrm{~km} / \mathrm{h}=16.67 \mathrm{~m} / \mathrm{s}
$$

(Q) Karadeniz Technical University-Mining Engineering Department / Dynamics Course / Spring 2020

Exercise 10:

The crate, which has a mass of 100 kg , is subjected to the action of the two forces. If it is originally at rest, determine the distance it slides in order to attain a speed of $6 \mathrm{~m} / \mathrm{s}$. The coefficient of kinetic friction between the crate and the surface is $\boldsymbol{\mu k}=0.2$.

Kinetics (work \& energy)

$$
\begin{aligned}
& \text { Exercise 10: } \\
& \frac{b^{100(9.81)}}{\substack{\text { forn }}} \\
& +\uparrow<F_{y}=0 \quad N+\frac{1000(3 / 5)-800 \sin) 0-981=0}{N=781 N}
\end{aligned}
$$

Exercise 11:

The force F, acting in a constant direction on the $20-\mathrm{kg}$ block, has a magnitude which varies with the position s of the block. Determine how far the block must slide before its velocity becomes $15 \mathrm{~m} / \mathrm{s}$. When $\mathrm{s}=0$ the block is moving to the right at $\mathrm{v}=6 \mathrm{~m} / \mathrm{s}$. The coefficient of kinetic friction between the block and surface $\mu \mathrm{k}=0.3$.

Exercise 11:

$$
\begin{aligned}
& w^{w}+1-F_{y}=0 \\
& N-w=0 \\
& N=W \\
& F_{f}=0.3 \mathrm{~N} \\
& \begin{aligned}
=0.315622 \mathrm{~N}
\end{aligned} \quad \begin{aligned}
&=20(9.81) \\
&=58.86 .2 \mathrm{~N}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Exercise 11: } \\
& U_{F}=\int F \cdot d s \\
& =\int_{0}^{5} 50 s^{1 / 2} d s \\
& =\frac{100}{3} 5^{3 / 2} \\
& v_{i} F_{f}=F_{1} \cdot 58.86
\end{aligned}
$$

$$
\begin{aligned}
& 8.85
\end{aligned}
$$

Exercise 11:

$$
\begin{aligned}
& T_{1}+\sum U_{1 \sim 2}=T_{2} \\
& \stackrel{F}{F_{f}} \frac{1}{2} 20\left(6^{2}\right)+\frac{100}{9} s^{3 / 2}-58.86 s \\
&=\frac{1}{2} 20\left(15^{2}\right) \\
& \frac{100}{3} s^{3 / 2}-58.86 s-1850=0
\end{aligned}
$$

Exercise 12:

The 2-Mg car increases its speed uniformly from rest to $25 \mathrm{~m} / \mathrm{s}$ in 30 s up the inclined road. Determine the maximum power that must be supplied by the engine, which operates with an efficiency of $\varepsilon=0.8$.

Kinetics (work \& energy)

Exercise 12:

$$
\begin{aligned}
& L^{\prime \prime} v^{\prime} \quad v=v_{0}+a_{c} t \\
& 25=0+a(30) \\
& \begin{array}{l}
a_{1}=0.833 \mathrm{~m} / \mathrm{s}^{2} \\
F=3618.53 \mathrm{~N}
\end{array} \\
& \left\{F_{\dot{x}=m a_{x}}\right. \\
& F-2000(5.81) \cdot \sin 5.71=2000(0.233)
\end{aligned}
$$

Exercise 12:

$$
\begin{aligned}
& \text { Pow }(\text { mes })=F \cdot v \\
& =3(18.57 .1251 \\
& =90473.24 \mathrm{w} \\
& \varepsilon=\frac{P_{0.0}}{P_{\text {in }}} \Rightarrow 0.8=\frac{90\langle 7.24}{P_{\text {in }}} \\
& P_{i_{r}}=113091.55 \mathrm{w}=11 \mathrm{~kW}
\end{aligned}
$$

Exercise 13:

The $50-\mathrm{kg}$ crate is pulled by the constant force P . If the crate starts from rest and achieves a speed of $10 \mathrm{~m} / \mathrm{s}$ in 5 s , determine the magnitude of P. The coefficient of kinetic friction between the crate and the ground is $\boldsymbol{\mu k}=0.2$.

Kinetics (impulse \& momentum)

Exercise 13:

$$
F_{f}=\mu_{k} \mid v=0.2 N^{0}
$$

$+\uparrow$

$$
\begin{aligned}
& M V_{1 y}+\left\{\int F_{y} d t=m V_{2 y}\right. \\
& 0+1+5+P(5) \cdot \sin 30-50 .(9.81 \mid(S)=0 \\
& M=490.5-0.5 P
\end{aligned}
$$

Exercise 13:
$\xrightarrow{\rightarrow}$

$$
\begin{aligned}
& m v_{1 x}+\left\{1 \mp x d z=m v_{2 x}\right. \\
& 0+P(5)(.050-0.2 N(s)=50(10) \\
& L_{1} 33 P-N=500 \\
& N=387.57 \mathrm{~N} \quad P=205 \mathrm{~N}
\end{aligned}
$$

Exercise 14:

During operation the jack hammer strikes the concrete surface with a force which is indicated in the graph. To achieve this the 2-kg spike S is fired into the surface at $90 \mathrm{~m} / \mathrm{s}$. Determine the speed of the spike just after rebounding.

Exercise 14:

$$
\left.\left.m\left(V_{y}\right)_{1}+\sum \int F_{y}\right) t=m V_{y}\right)_{2}
$$

(1)

$$
\begin{gathered}
2(-90)+\frac{1}{2} 0.4\left(10^{-3}\right)(1500)\left(10^{-3}\right)=2 \mathrm{v} \\
v=60 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Exercise 15:

Disk A has a mass of $\mathbf{2 k g}$ and is sliding forward on the smooth surface with a velocity $\mathrm{v}_{\mathrm{A} 1}=5 \mathrm{~m} / \mathrm{s}$ when it strikes the 4-kg disk B, which is sliding towards A at $v_{B 1}=2 \mathbf{~ m} / \mathrm{s}$ with direct central impact. If the coefficient of restitution between the disks is $e=0.4$, compute the velocities of A and B just after collision.

Kinetics (impulse \& momentum)

Exercise 15:

$$
\begin{gathered}
m_{A}\left(v_{A 1}\right) \perp m_{B} v_{B 1}=n_{A} v_{A 2}+m_{B} v_{B 2} \\
2(s)+4(-2)=2 v_{A 2}+4 v_{B 2} \\
2=2 v_{A 2}+4 v_{B 2} \\
v_{A 2}+2 v_{B 2}=1
\end{gathered}
$$

Exercise 15:

$$
\begin{aligned}
& C=\frac{V_{A_{2}}-V_{A_{2}}}{V_{A_{1}}-V_{B_{1}}} \\
& 0.4=\frac{V_{B_{2}}-V_{A_{2}}}{S-(-2)} \\
& V_{B_{2}}-V_{A_{2}}=2.8
\end{aligned}
$$

$$
\begin{aligned}
& V_{A 2}=-1.53 \mathrm{~m} / \mathrm{s} \\
& V_{A_{2}}=1.27 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Course Reference:

End of the lecture...

