SENSORS, cilt.17, sa.9, 2017 (SCI-Expanded)
Sleep physiology and sleep hygiene play significant roles in maintaining the daily lives of individuals given that sleep is an important physiological need to protect the functions of the human brain. Sleep disordered breathing (SDB) is an important disease that disturbs this need. Snoring and Obstructive Sleep Apnea Syndrome (OSAS) are clinical conditions that affect all body organs and systems that intermittently, repeatedly, with at least 10 s or more breathing stops that decrease throughout the night and disturb sleep integrity. The aim of this study was to produce a new device for the treatment of patients especially with position and rapid eye movement (REM)-dependent mild and moderate OSAS. For this purpose, the main components of the device (the microphone (snore sensor), the heart rate sensor, and the vibration motor, which we named SNORAP) were applied to five volunteer patients (male, mean age: 33.2, body mass index mean: 29.3). After receiving the sound in real time with the microphone, the snoring sound was detected by using the Audio Fingerprint method with a success rate of 98.9%. According to the results obtained, the severity and the number of the snoring of the patients using SNORAP were found to be significantly lower than in the experimental conditions in the apnea hypopnea index (AHI), apnea index, hypopnea index, in supine position's AHI, and REM position's AHI before using SNORAP (Paired Sample Test, p < 0.05). REM sleep duration and nocturnal oxygen saturation were significantly higher when compared to the group not using the SNORAP (Paired Sample Test, p < 0.05).