Molecular and in silico cloning, identification, and preharvest period expression analysis of a putative cytochrome P450 monooxygenase gene from Camellia sinensis (L.) Kuntze (tea)


Creative Commons License

Eminoğlu A., Akturk Dızman Y., Guzel S., Beldüz A. O.

TURKISH JOURNAL OF BIOLOGY, vol.42, pp.1-11, 2018 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 42
  • Publication Date: 2018
  • Doi Number: 10.3906/biy-1606-54
  • Journal Name: TURKISH JOURNAL OF BIOLOGY
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, TR DİZİN (ULAKBİM)
  • Page Numbers: pp.1-11
  • Keywords: Camellia sinensis (L.) Kuntze (tea), cytochrome P450 monooxygenase, molecular and in silico cloning, seasonal gene expression, FLAVONOID BIOSYNTHESIS, FATTY-ACIDS, O. KUNTZE, PLANTS, XENOBIOTICS, METABOLISM, PATHWAYS, POLLEN, FAMILY, RICE
  • Karadeniz Technical University Affiliated: Yes

Abstract

Cytochrome P450 monooxygenases are one of the largest heme-containing protein groups, and the majority of them catalyze hydroxylation reactions dependent on nicotinamide adenine dinucleotide phosphate and oxygen. Cytochrome P450 (CYP) enzymes function in a wide range of monooxygenation reactions essential in primary and secondary metabolism in plants. Camellia sinensis (L.) Kuntze is a commercially and economically valuable plant due to its medicinally important secondary metabolites and as a beloved beverage. Cytochrome P450 monooxygenases play a significant role in the biosynthesis of a variety of secondary metabolites in tea. Although the biosynthesis of secondary metabolites has been investigated in detail, there have been limited studies conducted on identifying the genetic mechanisms of CYP-catalyzed secondary metabolic pathways in the C. sinensis (tea) plant. In our study, we characterized a putative C. sinensis (L.) Kuntze cytochrome P450 monooxygenase gene (Csp450), which has 1759 bp full-length cDNA with 49 bp of 5 ' and 183 bp of 3 ' untranslated regions. The CDS of the gene is 1527 bp and 508 amino acids in length. BLAST results of the deduced amino acid sequence revealed a high similarity with the CYP704C1-like superfamily. Preharvest period gene expression analysis from May, July, and September did not show any difference.