Double adaptive power allocation strategy in electric vehicles with battery/supercapacitor hybrid energy storage system


Corapsiz M. R., KAHVECİ H.

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, cilt.46, sa.13, ss.18819-18838, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 46 Sayı: 13
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1002/er.8501
  • Dergi Adı: INTERNATIONAL JOURNAL OF ENERGY RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aquatic Science & Fisheries Abstracts (ASFA), Communication Abstracts, Compendex, Environment Index, INSPEC, Metadex, Pollution Abstracts, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.18819-18838
  • Anahtar Kelimeler: battery, supercapacitor HESS, double adaptive power allocation, electric vehicles, energy management, frequency separation, MANAGEMENT-SYSTEM, SPLIT STRATEGY, FREQUENCY, CONVERTER, BATTERY
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

This paper proposes a new energy management strategy (EMS) for electric vehicles (EVs) with battery/supercapacitor hybrid energy storage systems (HESS). Firstly, the battery/supercapacitor HESS configuration and obtaining the load current from the driving cycle are comprehensively explained. Secondly, fixed and adaptive frequency-based (AFB) EMS are discussed in detail. In the proposed method, the current demanded by the load is separated into low and high-frequency components with the help of an adaptive low-pass filter (A-LPF). In addition, adaptive battery current (ABC) is generated according to the supercapacitor (SC) state of charge (SoC), and a double adaptive power allocation strategy is performed. The proposed method is compared with the AFB-EMS for load currents, load powers, DC link voltages, filter cut-off frequencies, battery, and SC SoCs on the UDDS driving cycle. When the obtained results were evaluated together, it was observed that the proposed method completed the driving cycle with a higher battery SoC and realized the adaptive cut-off frequency in a narrower band.