The effects of head form on resistance performance and flow characteristics for a streamlined AUV hull design


Şener M. Z., Aksu E.

OCEAN ENGINEERING, cilt.257, ss.1-13, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 257
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.oceaneng.2022.111630
  • Dergi Adı: OCEAN ENGINEERING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), Communication Abstracts, Computer & Applied Sciences, Environment Index, ICONDA Bibliographic, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1-13
  • Anahtar Kelimeler: AUV, Computational fluid dynamics, Myring profile, RANS method
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

Autonomous underwater vehicles (AUVs) are submersible vehicles that can carry out a wide range of tasks, depending on their design. The design of AUVs has a significant impact on their hydrodynamic performance. A streamlined AUV hull form can be divided into three main parts: the head, middle body, and tail. In this study, we investigated the effects of head form on resistance performance and flow characteristics for an AUV hull. Myring equations are used in the creation of the AUV hull profile, and the exponential parameter (n) is considered to diversify the head forms. Computational fluid dynamics (CFD) simulation software ANSYS Fluent is used to carry out the RANS simulations for the investigation. The analyses are carried out within a range of 0.3 m/s to 1.4 m/s flow velocities to consider the effect of the Reynolds number. The head forms that are most effective in terms of drag and have the greatest volume are evaluated and suggested. Essential design characteristics such as velocity-coloured streamlines, pressure and skin friction distribution, wake area and drag coefficients are shown and discussed. The findings can be used as a guideline to minimize resistance and enhance the design of AUV models.