Isolation and identification of bacteria from the invasive pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) and evaluation of their biocontrol potential


ESKİ A., Erdoğan P., DEMİRBAĞ Z., DEMİR İ.

International Microbiology, cilt.27, sa.2, ss.631-643, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 27 Sayı: 2
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s10123-023-00418-1
  • Dergi Adı: International Microbiology
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, EMBASE, Environment Index, Food Science & Technology Abstracts, MEDLINE, Pollution Abstracts, Veterinary Science Database, DIALNET
  • Sayfa Sayıları: ss.631-643
  • Anahtar Kelimeler: Bacillus, Entomopathogen, Gut microbiota, Insecticidal toxin, Tomato leaf miner
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

As an alternative to chemical insecticides, gut bacteria of insects could be used to control insect pests. In this study, bacteria associated with Tuta absoluta, an invasive species that has developed resistance to chemical insecticides, were isolated, and their potential for pest control was investigated. We isolated 13 bacteria from larvae of the pest and identified the isolates on the basis of their morphological, physiological, biochemical, and molecular characteristics as Bacillus thuringiensis (Ta1-8), Staphylococcus petrasii (Ta9), Citrobacter freundii (Ta10), Chishuiella changwenlii (Ta11), Enterococcus casseliflavus (Ta12), and Pseudomonas tremae (Ta13). A laboratory screening test at 109 cfu/ml showed that B. thuringiensis (Bt) isolates caused more than 90% mortality after 3 days. Among the isolates, Bt-Ta1 showed the highest mortality in a short time. The LC50 and LC90 values for Bt-Ta1 were estimated to be 1.2 × 106 and 2 × 109 cfu/ml, respectively. Detailed characterization of Bt-Ta1 revealed that it is one of the serotypes effective on lepidopterans and contains the genes cry1Aa, cry2Aa, and vip3Aa, which encode lepidopteran toxic proteins. Bt-Ta1 isolate has been shown to have the potential to be used in the integrated management of Tuta absoluta.