Long-term water absorption behavior of thermoplastic composites produced with thermally treated wood

Hosseinihashemi S. K., Arwinfar F., Najafi A., NEMLİ G., Ayrilmis N.

MEASUREMENT, vol.86, pp.202-208, 2016 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 86
  • Publication Date: 2016
  • Doi Number: 10.1016/j.measurement.2016.02.058
  • Journal Name: MEASUREMENT
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.202-208
  • Keywords: Wood-plastic composite, Thermally treated wood, Water absorption kinetics, SORPTION
  • Karadeniz Technical University Affiliated: Yes


Wood plastic composites (WPCs) were produced from thermally treated beech (Fagus orientalis L.) wood and polypropylene (PP) polymer with coupling agent, by using injection molding. The wood chips were thermally treated for 30 or 120 min at three different temperatures (120 degrees C, 150 degrees C, or 180 degrees C) under saturated steam in a digester and then grounded (40-mesh size) by wood mill. Long-term water absorption kinetics of the composites were investigated with water immersion test. It was found that the water absorption decreased with increasing severity of the thermal-treatment and water immersion time as compared to the control composites. Furthermore, the composites produced with wood treated at 180 degrees C for 120 min exhibited the least water absorption. Microstructures of the composites were examined by SEM analysis to understand the mechanisms for the wood-plastic interaction which affected the water absorption. Further studies were conducted to model the water diffusion of the composites. Diffusion coefficient parameter in the models was obtained by fitting the model predictions with the experimental data. Water absorption of the studied composites was proved to follow the kinetics of a Fickian diffusion process. (C) 2016 Elsevier Ltd. All rights reserved.