EXPERIMENTAL THERMAL AND FLUID SCIENCE, cilt.159, 2024 (SCI-Expanded)
In this study, laminar flow and forced convective heat transfer of water-based ferrofluids flowing through a uniformly heated pipe are experimentally investigated under the presence of phase-shifted oscillating magnetic fields. To investigate the effect of phase shift on heat transfer, electromagnets are positioned along the tube, and oscillating magnetic fields are applied with various phase shift angles between opposing magnetic poles. Experiments are conducted for different Reynolds numbers (400 to 1000), magnetic field frequencies (0 Hz, 1 Hz, and 5 Hz), phase shift angles (0 degrees, 90 degrees, and 180 degrees), and nanoparticle volume fractions (0.5 % and 1 %). For each parameter set, local and average Nusselt numbers, as well as pressure drop values, are determined, and the effect of applied magnetic fields on the heat transfer rate is extensively discussed. Results showed that, applying an external magnetic field resulted in significant enhancements in the forced convective heat transfer of ferrofluid. Under an oscillating magnetic field with 0 degrees phase shift, maximum of 40 % and 20.6 % enhancements were observed in local and average Nusselt numbers respectively under the investigated parameters. Furthermore, applying oscillating magnetic fields with a phase shift between opposing poles caused significant fluctuations in the fluid, led to remarkable improvements in convective heat transfer rates. For 90 degrees and 180 degrees phase shifts, enhancements in local and average Nusselt numbers were observed to increase up to 73 % and 36 %, respectively.