Leveraging the trend analysis for modeling of the greenhouse gas emissions associated with coal combustion


KARAKURT İ., Avci B. D., AYDIN G.

Environmental Science and Pollution Research, vol.31, no.39, pp.52448-52472, 2024 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 31 Issue: 39
  • Publication Date: 2024
  • Doi Number: 10.1007/s11356-024-34654-3
  • Journal Name: Environmental Science and Pollution Research
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, IBZ Online, ABI/INFORM, Aerospace Database, Agricultural & Environmental Science Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, EMBASE, Environment Index, Geobase, MEDLINE, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Page Numbers: pp.52448-52472
  • Keywords: Coal combustion, Greenhouse gas emissions, Modeling, Trend analysis
  • Karadeniz Technical University Affiliated: Yes

Abstract

In this paper, it is aimed, for the first time, at deriving simple models, leveraging the trend analysis in order to estimate the future greenhouse gas emissions associated with coal combustion. Due to the expectations of becoming the center of global economic development in the future, BRICS-T (Brazil, the Russian Federation, India, China, South Africa, and Turkiye) countries are adopted as cases in the study. Following the models’ derivation, their statistical validations and estimating accuracies are also tested through various metrics. In addition, the future greenhouse gas emissions associated with coal combustion are estimated by the derived models. The results demonstrate that the derived models can be successfully used as a tool for estimating the greenhouse gas emissions associated with coal combustions with accuracy ranges from at least 90% to almost 98%. Moreover, the estimating results show that the total amount of greenhouse gas emissions associated with coal combustions in the relevant countries and in the world will increase to 14 BtCO2eq and 19 BtCO2eq by 2035, with an annual growth of 2.39% and 1.71%, respectively. In summary, the current study’s findings affirm the usefulness of trend analysis in deriving models to estimate greenhouse gas emissions associated with coal combustion.