AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, cilt.41, sa.1, ss.177-188, 2018 (SCI-Expanded)
This study was carried out to determine mechanical behavior and bone adaptation of total hip arthroplasty (THA) subject to concentrated and distributed muscle loads and hip contact forces during activities of walking and stair climbing. Finite element modeling of THA with different prostheses, activity and loading types was developed by adopting a statistical method. Two levels of prostheses, activity, and loading types were selected for the study. 2(3) factorial method was then pursued to design input and output data of finite element analysis. Maximum von Mises stresses were chosen to be output data on which statistical investigation was performed to investigate contribution and interaction of main factors on mechanical failure of cemented THA reconstructions by utilizing analysis of variance method (ANOVA). This study illustrated that the maximum von Mises stresses of THA showed considerable variation for main factors and their two-factor interactions.