Iranian Journal of Science, cilt.47, sa.3, ss.969-977, 2023 (SCI-Expanded)
The decay modes and half-lives of superheavy 265–282Ds isotopes have been investigated by using Relativistic Mean Field (RMF) model with density-dependent point-coupling and density-dependent meson-exchange functional. The potential energy surfaces as a funtion of deformation parameters (β, γ) for the considered Ds nuclei have been obtained by using a triaxially deformed RMF model calculations for the investigation of their ground-state shapes and binding energies. The computed ground-state binding energy values of given Ds isotopes have been used for calculations of Q values of the alpha (α), beta-plus/electron capture (β+ /EC), beta-minus (β-) and spontaneous fission (SF) decay modes. The dominant decay modes and half-lives of 265–282Ds isotopes have been predicted by using the computed Q-values and some empirical formulas. The results of the present study demonstrate that the 265–282Ds isotopes are well deformed, with prolate configuration in their ground-states. Our estimations for decay modes and half-lives are consistent with available experimental data.