Alternative prioritization for mitigating urban transportation challenges using a Fermatean fuzzy-based intelligent decision support model


Bouraima M. B., Ayyildiz E., Özçelik G., Tengecha N. A., Stević Ž.

Neural Computing and Applications, cilt.36, sa.13, ss.7343-7357, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 36 Sayı: 13
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s00521-024-09463-x
  • Dergi Adı: Neural Computing and Applications
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Applied Science & Technology Source, Biotechnology Research Abstracts, Compendex, Computer & Applied Sciences, Index Islamicus, INSPEC, zbMATH
  • Sayfa Sayıları: ss.7343-7357
  • Anahtar Kelimeler: CODAS, Fermatean fuzzy number, SWARA, Urban transportation
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

Practitioners and decision-makers often face difficulties in selecting and prioritizing effective strategies to address challenges to sustainable urban transportation development. Although there has been considerable research conducted on the subject, the Tanzanian context, which is greatly affected by social and environmental problems, has received inadequate attention. Therefore, this study intends to bridge this gap by pinpointing the obstacles to sustainable urban transportation and proposing the most appropriate strategies to tackle them. The study proposes seven strategies and determines five criteria to prioritize them. To accomplish this, the study proposes a novel Fermatean fuzzy-based intelligent decision support model to assess the criteria weights and prioritizes strategies based on the weighted criteria. The study validates the proposed methodology by conducting a sensitivity analysis, which indicates that restricting car use (A5), improving sector coordination (A1), and conducting extensive research on transportation issues (A7) are the top three strategies for promoting sustainable urban transportation. The study’s findings hold significant value in providing urban transportation planners with helpful guidance to develop optimization techniques that can improve transportation systems.