Advanced numerical modeling for nonlinear responses of sandwich multiphase composite plates with viscoelastic damping core


Vu H., Ly D., TOPAL U., Nguyen T., Nguyen-Thoi T.

Advances in Engineering Software, cilt.208, 2025 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 208
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1016/j.advengsoft.2025.103958
  • Dergi Adı: Advances in Engineering Software
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, zbMATH, Civil Engineering Abstracts
  • Anahtar Kelimeler: Carbon nanotubes (CNT), Cell-Based Smoothed Discrete Shear Gap Method, Laminated multiphase composite plates, Nonlinear dynamic analysis, Sinusoidal–zigzag theory, Viscoelastic core
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

This study introduces an advanced numerical model for the nonlinear dynamic analysis of sandwich multiphase composite plates composed of carbon nanotubes (CNT), carbon fibers, and epoxy, featuring a viscoelastic core modeled using the Golla–Hughes–McTavish (GHM) method. The proposed framework uniquely combines the Cell-Based Smoothed Discrete Shear Gap Method (CS-DSG3) with the sinusoidal–zigzag shear deformation theory, pioneering their integration to improve layerwise modeling and viscoelastic damping analysis. The sinusoidal–zigzag theory effectively captures the continuous in-plane displacement distributions, yielding superior predictions of the layered structure's mechanical response compared to classical theories. By incorporating the von Kármán displacement–strain relationship, the model effectively captures the passive damped dynamic behavior of viscoelastic core plate under large deformations. The Newmark time integration scheme and Picard's methods are employed to efficiently solve the resulting nonlinear equations of motion at each time step. Validation against benchmark studies demonstrates the model's accuracy and reliability in capturing the complex dynamic responses of laminated systems. A comprehensive parametric investigation further explores the impact of material properties, including the volume fractions and configurations of CNTs and carbon fibers, on the nonlinear dynamic behavior. These advancements position the model as a computationally efficient and high-fidelity tool for analyzing the nonlinear dynamics of complex laminated composite structures.