Tyrosinase and alpha-glucosidase inhibitory potential of compounds isolated from Quercus coccifera bark: In vitro and in silico perspectives


SARI S., Barut B. , ÖZEL A. , Kuruuzum-Uz A., ŞÖHRETOĞLU D.

BIOORGANIC CHEMISTRY, cilt.86, ss.296-304, 2019 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 86
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1016/j.bioorg.2019.02.015
  • Dergi Adı: BIOORGANIC CHEMISTRY
  • Sayfa Sayıları: ss.296-304

Özet

Bark of Quercus coccifera is widely used in folk medicine. We tested tyrosinase and alpha-glucosidase inhibitory effects of Q. coccifera bark extract and isolated compounds from it. The extract inhibited tyrosinase with an IC50 value of 75.13 +/- 0.44 mu g/mL. Among the isolated compounds, polydatin (6) showed potent tyrosinase inhibition compared to the positive control, kojic acid, with an IC50 value of 4.05 +/- 0.30 mu g/mL. The Q. coccifera extract also inhibited alpha-glucosidase significantly with an IC50 value of 3.26 +/- 0.08 mu g/mL. (-)-8-Chlorocatechin (5) was the most potent isolate, also more potent than the positive control, acarbose, with an IC50 value of 43.60 +/- 0.67 mu g/mL. According to the kinetic analysis, 6 was a noncompetitive and 5 was a competitive inhibitor of tyrosinase, and 5 was a noncompetitive a-glucosidase inhibitor. In the light of these findings, we performed in silico molecular docking studies for 5 and 6 with QM/MM optimizations to predict their tyrosinase inhibition mechanisms at molecular level and search for correlations with the in vitro results. We found that the ionized form of 5 (5i) showed higher affinity and more stable binding to tyrosinase catalytic site than its neutral form, while 6 bound to the predicted allosteric sites of the enzyme better than the catalytic site.