Genetic parameters of egg quality traits in long-term pedigree recorded Japanese quail


Sari M., Tilki M., Saatci M.

POULTRY SCIENCE, cilt.95, sa.8, ss.1743-1749, 2016 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 95 Sayı: 8
  • Basım Tarihi: 2016
  • Doi Numarası: 10.3382/ps/pew118
  • Dergi Adı: POULTRY SCIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1743-1749
  • Anahtar Kelimeler: Japanese quail, egg quality traits, genetic parameter, COTURNIX-COTURNIX-JAPONICA, BODY-WEIGHT, LAYER AGE, SELECTION, STORAGE, HERITABILITIES, PERFORMANCE, LINES
  • Karadeniz Teknik Üniversitesi Adresli: Hayır

Özet

This study was conducted to determine the genetic parameters of internal and external quality traits of Japanese quail eggs. Two statistical models were used in the calculation of genetic parameters and variance components. While 286 eggs were used based on model 1, 1,524 eggs were used based on model 2. Genetic parameters of the first eggs were calculated with direct genetic effect included in the analysis as random factors by using model 1. Model 2 was used for all eggs (5 to 6 eggs from each hen for six rearing groups). As different from model 1, their permanent environmental effects were also included in the model 2. Heritability of egg weight, egg length, egg width, shape index, shell weight, shell thickness, and shell ratio among the external quality traits of the eggs was respectively found to be 0.44, 0.53, 0.51, 0.70, 0.19, 0.16, and 0.05, respectively, according to model 1. These values were found to be 0.46, 0.40, 0.74, 0.48, 0.60, 0.28, and 0.21, respectively, according to model 2. Yolk weight, yolk diameter, yolk height, yolk index, yolk ratio, albumen weight, albumen height, albumen ratio, and Haugh unit values among the internal quality traits of the egg were found to be 0.22, 0.32, 0.02, 0.16, 0.19, 0.34, 0.19, 0.17, and 0.17, respectively, according to model 1. These internal quality traits were found to be 0.27, 0.18, 0.38, 0.06, 0.20, 0.41, 0.15, 0.15, and 0.12, respectively, according to model 2. Consequently, in this study, strong genetic correlations were detected between albumen height and Haugh unit, and also between albumen height and albumen weight. Additionally, a high and positive correlation was observed between some yolk traits (yolk weight and diameter) and albumen traits (weight and height). All these genetic correlations can be used to improve egg quality with a selection according to albumen weight.