The final pulse of the Early Cenozoic adakitic activity in the Eastern Pontides Orogenic Belt (NE Turkey): An integrated study on the nature of transition from adakitic to non-adakitic magmatism in a slab window setting


EYÜBOĞLU Y. , Dudas F. O. , Santosh M., EROGLU-GUMRUK T. , AKBULUT K. , Yi K., ...Daha Fazla

JOURNAL OF ASIAN EARTH SCIENCES, cilt.157, ss.141-165, 2018 (SCI İndekslerine Giren Dergi) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 157
  • Basım Tarihi: 2018
  • Doi Numarası: 10.1016/j.jseaes.2017.07.004
  • Dergi Adı: JOURNAL OF ASIAN EARTH SCIENCES
  • Sayfa Sayıları: ss.141-165

Özet

The Eastern Pontides Orogenic Belt, one of the best examples of a fossil continental arc in the Alpine-Himalayan system, is characterized by adakitic magmatism during the Early Cenozoic. Popular models correlate the adakitic magmatism to syn- or post-collisional processes occurring after the collision between the Eastern Pontides Orogenic Belt and the Tauride Platform at the end of Late Mesozoic and/or beginning of the Cenozoic. We present new geological, petrological and chronological data from andesites and felsic tuffs exposed in the Bayburt area, in the southern part of the Eastern Pontides Orogenic Belt, and discuss the nature of the transition from adakitic to non-adakitic activities in a continental arc. Major, trace and rare earth element concentrations of both andesites and felsic tuffs clearly suggest that they are related to arc magmatism in a continental arc with adakitic composition. The isotopic compositions are permissive of mixing between a component similar to depleted mantle and a second component that is either mafic lower crust or subducted oceanic crust. Ar-39/Ar-40 hornblende and U/Pb zircon dating indicate that this adakitic magmatism in the Bayburt area ended by about 47 Ma, and transformed into non-adakitic, granitoid arc magmatism in the area immediately north of Bayburt in the Lutetian (similar to 46 Ma). Based on our new results in conjunction with available data, we propose that the beginning of northward rollback of a south-directed subducting slab, and simultaneous opening of a slab window related to ridge subduction, triggered both adakitic magmatism for approximately a 10 Myr period between 57.6 and 47 Ma and arc-parallel extension that caused the opening of the Early Cenozoic sedimentary basins. We also suggest that the shallow marine environment, in which Nummulite-bearing sandy limestones accumulated in the Early Cenozoic, was transformed into a saline-lake environment during the pyroclastic activity that produced the studied felsic tuffs at similar to 47 Ma.