JOURNAL OF APPLIED GEOPHYSICS, cilt.59, sa.4, ss.324-336, 2006 (SCI-Expanded)
Seismic data have still no enough temporal resolution because of band-limited nature of available data even if it is deconvolved. However, lower and higher frequency information belonging to seismic data is missing and it is not directly recovered from seismic data. In this paper, a method originally applied by Honarvar et al. [Honarvar, F., Sheikhzadeh, H., Moles, M., Sinclair, A.N, 2004. Improving the time-resolution and signal-noise ratio of ultrasonic NDE signals. Ultrasonics 41, 755-763.] which is the combination of the most widely used Wiener deconvolution and AR spectral extrapolation in frequency domain is briefly reviewed and is applied to seismic data to improve temporal resolution further. The missing frequency information is optimally recovered by forward and backward extrapolation based on the selection of a high signal-noise ratio (SNR) of signal spectrum deconvolved in signal processing technique. The combination of the two methods is firstly tested on a variety of synthetic examples and then applied to a stacked real trace. The selection of necessary parameters in Wiener filtering and in extrapolation are discussed in detail. It is used an optimum frequency windows between 3 and 10 dB drops by comparing results from these drops, while frequency windows are used as standard between 2.8 and 3.2 dB drops in study of Honarvar et al. [Honarvar, F., Sheikhzadeh, H., Moles, M., Sinclair, A.N, 2004. Improving the time-resolution and signal-noise ratio of ultrasonic NDE signals. Ultrasonics 41, 755-763.]. The results obtained show that the application of the purposed signal processing technique considerably improves temporal resolution of seismic data when compared with the original seismic data. Furthermore, AR based spectral extrapolated data can be almost considered as reflectivity sequence of layered medium. Consequently, the combination of Wiener deconvolution and AR spectral extrapolation can reveal some details of seismic data that cannot be observed in raw signal or which lost during the previous processing. (C) 2005 Elsevier B.V. All rights reserved.