Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dolek and Sariqiqek Plutons, Eastern Turkey: Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting

Karsli O., Chen B., Aydin F. , Sen C.

LITHOS, cilt.98, ss.67-96, 2007 (SCI İndekslerine Giren Dergi) identifier identifier


The major and trace elements and Sr-Nd-Pb isotopes of the host rocks and the mafic microgranular enclaves (MME) gathered from the Dolek and Saricicek plutons, Eastern Turkey, were studied to understand the underlying petrogenesis and geodynamic setting. ne plutons were emplaced at similar to 43 Ma at shallow depths (similar to 5 to 9 km) as estimated from Al-in hornblende geobarometry. The host rocks consist of a variety of rock types ranging from diorite to granite (SiO2= 56.98-72.67 wt.%; Mg#= 36.8-50.0) populated by MMEs of gabbroic diorite to monzodiorite in composition (SiO2 = 53.21-60.94 wt.%; Mg#=44.4-53.5). All the rocks show a high-K calc-alkaline differentiation trend. Chondrite-normalized REE patterns are moderately fractionated and relatively flat [(La/Yb)(N)=5.11 to 8.51]. They display small negative Eu anomalies (Eu/Eu* =0.62 to 0.88), with enrichment of LILE and depletion of HFSE. Initial Nd-Sr isotopic compositions for the host rocks are epsilon(Nd)(43 Ma)= -0.6 to 0.8 and mostly I-Sr= 0.70482-0.70548. The Nd model ages (T-DM) vary from 0.84 to 0.99 Ga. The Ph isotopic ratios are ((206)pb/(204)pb)= 18.60-18.65, (Pb-207/Pb-204) = 15.61-15.66 and (Pb-208/Pb-204) = 38.69-38.85. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with Is, ranging from 0.70485 to 0.70517, epsilon(Nd)(4 3 M a) -0.1 to 0.8 and with Pb isotopic ratios of (Pb-206/Pb-204)= 18.58-18.64, (Pb-207/Pb-204)= 15.60-15.66 and (Pb-208/Pb-204)=38.64-38.77. The MMEs have T-DM ranging from 0.86 to 1.36 Ga. The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data, in conjunction with the geodynamic evidence, suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, probably triggered by the upwelling of the asthenophere, and interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on the Sr-Nd isotope data indicates that similar to 77-83% of the subcontinental lithospheric mantle involved in the genesis. Consequently, the interaction process played an important role in the genesis of the hybrid granitoid bodies, which subsequently underwent a fractional crystallization process along with minor amounts of crustal assimilation, en route to the upper crustal levels generating a wide variety of rock types ranging from diorite to granite in an extensional regime. (c) 2007 Elsevier B.V All rights reserved.