Preparation and Characterization of Supported Molybdenum Doped TiO2 on α-Al2O3 Ceramic Substrate for the Photocatalytic Degradation of Ibuprofen (IBU) under UV Irradiation


Creative Commons License

Anucha C. B., BACAKSIZ E., Stathopoulos V. N., Pandis P. K., Argirusis C., Andreouli C., ...Daha Fazla

Catalysts, cilt.12, sa.5, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 5
  • Basım Tarihi: 2022
  • Doi Numarası: 10.3390/catal12050562
  • Dergi Adı: Catalysts
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, CAB Abstracts, Chemical Abstracts Core, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: TiO2, heterogeneous photocatalyst, doping, sonochemical preparation, contaminants of emerging concern (CECs), UV irradiation, ceramic, dip coating, supported photocatalyst, PHASE-CHANGE MATERIALS, EMERGING CONTAMINANTS, IMMOBILIZED TIO2, METHYLENE-BLUE, THIN-FILMS, WATER, PHARMACEUTICALS, SEWAGE, MO, CO
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

© 2022 by the authors. Licensee MDPI, Basel, Switzerland.TiO2-based photocatalyst materials have been widely studied for the abatement of contaminants of emerging concerns (CECs) in water sources. In this study, 1.5 wt% Mo-doped HRTiO2 was obtained by the sonochemical method. The material was analyzed and characterized for thermal, structural/textural, morphological, and optical properties using TGA-DSC, XRD, TEM, FTIR, XPS, SEM-EDS, BET (N2 adsorption-desorption measurement and BJH application method), and UV-Vis/DRS measurement. By the dip-coating technique, ~5 mg of Mo/HRTiO2 as an active topcoat was deposited on ceramic. In suspension and for photocatalyst activity performance evaluation, 1 g/L of 1.5 wt% (Mo)/HRTiO2 degraded ~98% of initial 50 mg/L IBU concentration after 80 min of 365 nm UV light irradiation and under natural (unmodified) pH conditions. Effects of initial pH condition, catalyst dosage, and initial pollutant concentration were also investigated in the photocatalyst activity performance in suspension. The photocatalyst test on the supported catalyst removed ~60% of initial 5mg/L IBU concentration, while showing an improved performance with ~90% IBU removal employing double and triple numbers of coated disk tablets. After three successive cycle test runs, XRD phase reflections of base TiO2 component of the active photocatalyst supported layer remained unchanged: An indication of surface coat stability after 360 min of exposure under 365 nm UV irradiation.