Modified adaptive weight multi-objective mountain gazelle optimizer for construction time-cost trade-off optimization problems


Pandey M., Baltacı Y., Mishra S., Sharma M., Bhattarai S. K., Sethi K. C.

Asian Journal of Civil Engineering, 2025 (Scopus) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1007/s42107-025-01594-3
  • Dergi Adı: Asian Journal of Civil Engineering
  • Derginin Tarandığı İndeksler: Scopus, zbMATH
  • Anahtar Kelimeler: Decision-support tool, Modified adaptive weight approach, Mountain gazelle optimizer, Pareto-front solutions, Time-cost-trade-off problems
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

Efficient project scheduling requires balancing conflicting objectives such as time and cost. This study proposes a Modified Adaptive Weight Multi-Objective Mountain Gazelle Optimizer (MAWA-MGO) to address the Construction Time–Cost Trade-off (TCT) problem. The algorithm enhances the original MGO by using an adaptive weight adjustment strategy that dynamically balances exploration and exploitation, preventing premature convergence and improving Pareto-optimal solution quality. A benchmark 9-activity project was used to test the model, minimizing both project duration and total cost under precedence and resource constraints. Comparative results with non-dominated sorting GA (NSGA-II), multi-objective particle swarm optimization (MOPSO), and standard MGO show that MAWA-MGO achieves a more diverse and convergent Pareto front, a significant reduction in duration and cost, respectively. The findings confirm MAWA-MGO’s robustness and practicality as a decision-support tool for optimizing construction schedules. Future studies may extend it to include quality and environmental objectives for sustainable planning.