Investigation of the Effects of Sprinkler System in Automated Vehicle Parking Structures Using Performance-Based Fire Assessment


ALTUNIŞIK A. C., Mostofi S., BALTACI A., AKBULUT Y. E., OKUR F. Y.

FIRE TECHNOLOGY, 2024 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Publication Date: 2024
  • Doi Number: 10.1007/s10694-024-01634-5
  • Journal Name: FIRE TECHNOLOGY
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Agricultural & Environmental Science Database, Applied Science & Technology Source, Compendex, Computer & Applied Sciences, Environment Index, ICONDA Bibliographic, INSPEC, Civil Engineering Abstracts
  • Karadeniz Technical University Affiliated: Yes

Abstract

Fire incidents in automated vehicle parking (AVP) structures are rare, yet the impact of such incidents on the structural integrity of these systems is crucial for design considerations. Although sprinklers are recognized for their effective fire suppression in various settings, the effectiveness of sprinkler systems in AVP structures fire incidents and their contribution to the post fire conditions of these structures has received scant attention. Consequently, this study performed a comprehensive numerical evaluation of fire performance within these structures, with a primary focus on the evaluation of sprinkler systems. Three distinct fire location scenarios were employed to assess the performance of the sprinkler systems and post fire conditions of the structure. The evaluation process starts with simulation of each scenario using the Fire Dynamics Simulator (FDS). Subsequently, the FDS results were transferred to OpenSees to perform thermo-mechanical analyses. The post-fire conditions of the structure were then evaluated based on structural responses obtained from OpenSees and based on performance-based assessment (PBA) criteria. The findings indicated that the employed sprinkler configuration effectively reduced the vertical progression of fire. Notably, when the fire ignited in proximity to the facade, the sprinkler system had a lower performance compared to the other scenarios. This finding suggests the need for adopting advanced suppression system configurations that are specifically designed to reduce fire risks in these facade-proximate areas. Furthermore, these observations highlight the potential value of considering the use of non-combustible materials in facade design to improve fire safety. The outcome of this study provides insights for enhancing the fire safety measures in car parks with steel structures. Such enhancements are crucial for establishing a robust fire safety framework in these environments.