ACTA GEOTECHNICA SLOVENICA, cilt.11, sa.2, ss.70-79, 2014 (SCI-Expanded)
The optimization for symmetrical gravity retaining walls of different heights is examined in this study. For this purpose, an optimization problem of continuous functions is developed. The continuous functions are the objective function defined as the cross-sectional area of the wall and the constraint functions derived from external stability and internal stability verifications. The verifications are listed as the overturning the forward sliding the bearing capacity, the shears in the stem and the bendings in the stem. The heights of the walls are selected as 2.0, 3.0, and 4.0 m in order to investigate the outline of the optimum cross-section and the effect of the wall height on the outline. Additionally, the physical and mechanical properties of the soil are kept constant in order to compare only the effect of the height on the geometry. The upper and lower bounds of the solution space are specified to be as wide as possible and the minimum dimensions suggested for the gravity retaining walls are not taken into account. A common feature of the optimum cross-sections of walls with different heights is to have a very wide lower part like a wall foundation and a slender stem. However, other than the forward sliding constraint, the bending constraints are active at the optimum values of the variables.