Abrasive wear behaviour of B4C particle reinforced Al2024 MMCs


ÇANAKÇI A., Arslan F.

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, cilt.63, ss.785-795, 2012 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 63
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1007/s00170-012-3931-8
  • Dergi Adı: INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.785-795
  • Anahtar Kelimeler: Abrasion wear, Metal matrix composites (MMCs), B4C particle, Aluminium alloy, DRY SLIDING WEAR, PARTICULATE REINFORCEMENT, TRIBOLOGICAL PROPERTIES, ALUMINUM-ALLOY, MECHANICAL-PROPERTIES, HEAT-TREATMENT, COMPOSITES, RESISTANCE, MICROSTRUCTURE, SIZE
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

In this study, the effects of volume fraction and particle size of boron carbide on the abrasive wear properties of B4C particle reinforced aluminium alloy composites have been studied. For this purpose, a block-on-disc abrasion test apparatus was utilized where the samples slid against the abrasive suspension mixture at room conditions. The volume loss, specific wear rate and roughness of the samples have been evaluated. The effects of sliding time, particle content and particle size of B4C particles on the abrasive wear properties of the composites have been investigated. The dominant wear mechanisms were identified using scanning electron microscopy. The results showed that the specific wear rate of composites decreased with increasing particle volume fraction. Furthermore, the specific wear rate decreased with increasing the size of particle for the composites containing the same amount of B4C. Hence, it is deduced that aluminium alloy composites reinforced with larger B4C particles are more effective against the abrasive suspension mixture than those reinforced with smaller B4C particles.