Effects of lead nitrate and pre-aeration on the deportment of base/precious metals in cyanide leaching of a pyritic refractory gold concentrate

Creative Commons License

DEVECİ H., YAZICI E. Y., CELEP O., Mercimek M., Demirel C., Çakmak S., ...More

Physicochemical Problems of Mineral Processing, vol.59, no.5, 2023 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 59 Issue: 5
  • Publication Date: 2023
  • Doi Number: 10.37190/ppmp/166259
  • Journal Name: Physicochemical Problems of Mineral Processing
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Metadex, Civil Engineering Abstracts
  • Keywords: copper, cyanide leaching, gold, lead nitrate, pyrite, refractory ore
  • Karadeniz Technical University Affiliated: Yes


This study was undertaken to improve gold and silver extraction from a pyritic gold flotation concentrate, which assayed 11 g/t Au, 42 g/t Ag, 0.21% Cu, 3.57% Zn, and 31% Fe. Direct cyanide leaching of the concentrate at 1.5 g/L NaCN yielded a low gold extraction (37%), confirming its refractory nature. Effects of lead nitrate (200-500 g/t Pb(NO3)2) and pre-aeration (24 h) before cyanide leaching at 1.5-3.5 g/L NaCN were investigated. Earlier studies have focused on the impact of these parameters on gold leaching. Besides gold, this study demonstrated the behaviour of silver and base metals (copper and zinc) from the pyritic gold concentrate. Adding lead nitrate had a negligible effect on gold extraction whilst improving silver extraction. Dissolution of copper was substantially suppressed by adding lead nitrate, i.e., from 23% (no Pb(NO3)2) to 4% (500 g/t Pb(NO3)2) over 24 h. Zinc dissolution was negligible (<0.01%). Pre-aeration of the concentrate improved the gold and silver extractions by 4-14% and 23-44% at the subsequent cyanide leaching (1.5-3.5 g/L NaCN). However, it did not affect the leaching of copper. Only negligible leaching of zinc (<0.6%) occurred during cyanide leaching. Pre-aeration also reduced cyanide consumption in subsequent cyanide leaching (1.5 g/L NaCN), i.e., from 2.83 kg/t to 2.03 kg/t NaCN per solids. These results suggested that lead nitrate can improve silver extraction while suppressing copper dissolution, which would be advantageous in the leaching-adsorption circuit (CIP), mitigating the dissolved copper-associated problems. Pre-aeration can also be suitable for improved gold/silver extractions and reduced reagent consumption.