Synthesis and Characterization of ABA-Type Triblock Copolymers Using Novel Bifunctional PS, PMMA, and PCL Macroinitiators Bearing <i>p</i>-xylene-bis(2-mercaptoethyloxy) Core


Mısır M., SAVAŞKAN YILMAZ S., BİLGİN A.

POLYMERS, cilt.15, sa.18, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 18
  • Basım Tarihi: 2023
  • Doi Numarası: 10.3390/polym15183813
  • Dergi Adı: POLYMERS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, Communication Abstracts, Compendex, Food Science & Technology Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: ABA–type triblock copolymer, atom transfer radical polymerization, heavy metal extraction, ring opening polymerization, the novel bi-functional ATRP and ROP initiator
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

Syntheses of novel bifunctional poly(methyl methacrylate) (PMMA)-, poly(styrene) (PS)-, and (poly epsilon-caprolactone) (PCL)-based atom transfer radical polymerization (ATRP) macroinitiators derived from p-xylene-bis(1-hydroxy-3-thia-propanoloxy) core were carried out to obtain ABA-type block copolymers. Firstly, a novel bifunctional ATRP initiator, 1,4-phenylenebis(methylene-thioethane-2,1-diyl)bis(2-bromo-2-methylpropanoat) (PXTBR), synthesized the reaction of p-xylene-bis(1-hydroxy-3-thia-propane) (PXTOH) with alpha-bromoisobutryl bromide. The PMMA and PS macroinitiators were prepared by ATRP of methyl methacrylate (MMA) and styrene (S) as monomers using (PXTBR) as the initiator and copper(I) bromide/N,N,N ',N '',N ''-pentamethyldiethylenetriamine (CuBr/PMDETA) as a catalyst system. Secondly, di(alpha-bromoester) end-functionalized PCL-based ATRP macronitiator (PXTPCLBr) was prepared by esterification of hydroxyl end groups of PCL-diol (PXTPCLOH) synthesized by Sn(Oct)(2)-catalyzed ring opening polymerization (ROP) of epsilon-CL in bulk using (PXTOH) as initiator. Finally, ABA-type block copolymers, PXT(PS-b-PMMA-b-PS), PXT(PMMA-b-PS-b-PMMA), PXT(PS-b-PCL-b-PS), and PXT(PMMA-b-PCL-b-PMMA), were synthesized by ATRP of MMA and S as monomers using PMMA-, PS-, and PCL-based macroinitiators in the presence of CuBr/PMDETA as the catalyst system in toluene or N,N-dimethylformamide (DMF) at different temperatures. In addition, the extraction abilities of PCL and PS were investigated under liquid-liquid phase conditions using heavy metal picrates (Ag+, Cd2+, Cu2+, Hg2+, Pb2+, and Zn2+) as substrates and measuring with UV-Vis the amounts of picrate in the 1,2-dichloroethane phase before and after treatment with the polymers. The extraction affinity of PXTPCL and PXTPS for Hg2+ was found to be highest in the liquid-liquid phase extraction experiments. Characterizations of the molecular structures for synthesized novel initiators, macroinitiators, and the block copolymers were made by spectroscopic (FT-IR, ESI-MS, H-1 NMR, C-13 NMR), DSC, TGA, chromatographic (GPC), and morphologic SEM.