Microplastic contamination and characteristics spatially vary in the southern Black Sea beach sediment and sea surface water


TERZİ Y., GEDİK K., ERYAŞAR A. R., ÖZTÜRK R. Ç., ŞAHİN A., YILMAZ F.

Marine Pollution Bulletin, cilt.174, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 174
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.marpolbul.2021.113228
  • Dergi Adı: Marine Pollution Bulletin
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aerospace Database, Agricultural & Environmental Science Database, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Environment Index, Geobase, MEDLINE, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Coastal pollution, Persistent organic pollutants, Marine environment, Synthetic polymer, FTIR, PLASTIC DEBRIS, MARINE LITTER, COASTAL WATERS, MYTILUS-EDULIS, FISH LARVAE, ENVIRONMENT, INGESTION, ABUNDANCE, POLLUTION, ANCHOVY
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

© 2021 Elsevier LtdIn this study, the abundance, and characteristics of the microplastics on the southern coast of the Black Sea were assessed. More than 70% of the detected microplastics were smaller than 2.5 mm and mostly consisted of fibers and fragments. The average microplastic abundance in the beach sediment and seawater were 64.06 ± 8.95 particles/kg and 18.68 ± 3.01 particles/m3, respectively. The western coast of the study area (Marmara region) was the most polluted area, and a spatially significant difference was determined in terms of abundance. The composition in the beach sediment (particles/kg) was dominated by styrene acrylonitrile copolymer (SAC) (40.53%), polyethylene terephthalate (PET) (38.75%), and polyethylene (PE) (6.91%), whereas the seawater (particles/m3) was dominated by PET (57.26%), PE (13.52%), and polypropylene PP (11.24%). The results of our study can be a baseline for environmental modeling studies and experimental studies on the marine organisms inhabiting the Black Sea.