Lipoic Acid Can Maintain Stimulation of the Antioxidant System at Lower Reactive Oxygen Species, Ascorbate and Glutathione Levels in Osmotic Stressed Maize


Gumrukcu Simsek S., TERZİ R., Guler N. S.

Russian Journal of Plant Physiology, cilt.71, sa.3, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 71 Sayı: 3
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1134/s1021443724604373
  • Dergi Adı: Russian Journal of Plant Physiology
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Veterinary Science Database
  • Anahtar Kelimeler: antioxidant enzyme, ascorbate, gene expression, glutathione, lipoic acid, osmotic stress, Zea mays
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

Abstract: Lipoic acid (LA), a unique antioxidant compound, can stimulate the antioxidant defense system in plants subjected to abiotic stresses. We aimed to determine the role of LA in induction of the antioxidant system at lower reactive oxygen species (ROS), ascorbate (ASC) and glutathione (GSH) levels in osmotic-stressed maize (Zea mays L.). For this purpose, ROS, GSH and ASC contents were decreased using N,N'‑dimethylthiourea (DMTU), L-buthionine sulfoximine (BSO) and acriflavine (AF), respectively. Pots containing 21-day-old seedlings were divided into nine groups consisting of a non-stressed group; polyethylene glycol6000 (PEG)-induced osmotic stress (PEG) group, LA, DMTU, BSO and AF treatment groups; and DMTU, BSO, and AF-combined LA treatment groups under osmotic stress. ROS contents and membrane damage after the DMTU, BSO, and AF-combined LA treatments were lower than those after the DMTU, BSO, and AF treatments, respectively. Moreover, the LA treatments in combination with DMTU, BSO and AF increased dry weight, activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase), and contents of GSH, ASC, and LA compared to the DMTU, BSO and AF treatments. Additionally, the relative expression levels of SUPEROXIDE DISMUTASE, CATALASE1 and ASCORBATE PEROXIDASE1 genes were consistent with the findings for their related antioxidant enzyme activities. These results indicated that LA could adjust ROS level and maintain stimulation of the antioxidant system at lower ROS, GSH, and ASC levels in osmotic stressed maize. Furthermore, LA may play a signaling role and assume the function of ASC and GSH in maize under PEG-induced osmotic stress.