Hybrid Effect in the Mechanical Properties of Jute/Rockwool Hybrid Fibres Reinforced Phenol Formaldehyde Composites


Ozturk B.

FIBERS AND POLYMERS, cilt.11, sa.3, ss.464-473, 2010 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 11 Sayı: 3
  • Basım Tarihi: 2010
  • Doi Numarası: 10.1007/s12221-010-0464-3
  • Dergi Adı: FIBERS AND POLYMERS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.464-473
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

This research work was concerned with the evaluation of the effect of fibre content on the mechanical properties of composites. Composites were fabricated using jute/phenol formaldehyde (PF), rockwool/PF, and jute/rockwool hybrid PF with varying fibre loadings. Jute and rockwool fibre reinforced PF composites were fabricated with varying fibre loadings (16, 25, 34, 42, 50, and 60 vol.%). The jute/rockwool hybrid PF composites were manufactured at various ratios of jute/rockwool fibres such as 1:0, 0.92:0.08, 0.82:0.18, 0.70:0.30, 0.54:0.46, 0.28:0.72, and 0:1. Total fibre content of the hybrid composites was 42 vol.%. The results showed that tensile strength of the composite increased with increasing fibre content up to 42 vol.% over which it decreased for jute and rockwool fibre reinforced PF composites. Flexural strength of the composite was noted to peak at a fibre loading of 42 vol.% for jute/PF composites, and 34 vol.% for rockwool/PF composites. Impact strength of jute/PF composites increased with increasing fibre loading but that of rockwool/PF composites decreased at higher (>34 vol.%) fibre loadings. Tensile, flexural, and impact strengths of jute/PF composites were found to be higher than those of rockwool/PF composites. The maximum hardness values were obtained 42 vol.% for jute/PF composite, and 34 vol.% for rockwool/PF composite. Further increase in fibre loading adversely affected the hardness of both composites. For jute/rockwool hybrid PF composites, tensile and impact strengths decreased with increasing rockwool fibre loading. The maximum flexural strength of jute/rockwool hybrid PF composites was obtained at a 0.82:0.18 jute/rockwool fibre ratio while maximum hardness was observed at a 0.28:0.72 jute/rockwool fibre ratio. The fractured surfaces of the composites were analysed using scanning electron microscope in order to have an insight into the failure mechanism and fibre/matrix interface adhesion.