Jeodezi ve Jeoinformayon Dergisi, cilt.8, sa.2, ss.84-103, 2021 (Hakemli Dergi)
Anlık deniz seviyesinin tahmini, jeodezik düşey datumun belirlenmesi ve güncellenmesi, kıyı alanlarının korunması, kıyı
ekosistemlerinin izlenmesi, kıyı yapılarının planlanması ve bakımı, iklim değişikliği etkilerinin gözlenmesi açısından büyük önem
taşımaktadır. Anlık deniz seviyesi tahmini için kullanılan geleneksel yöntemler genellikle doğrusal varsayımlara dayanmaktadır. Ancak
deniz seviyesini etkileyen faktörler çok çeşitlidir ve etkileri bölgeden bölgeye değişmektedir. Genellikle doğrusal olmayan ve karmaşık
bağımlılık yapılarına sahiptirler. Bu nedenle, doğrusal olmayan deniz seviyeleri doğrusal modeller kullanılarak yüksek duyarlıkta
belirlenemez. Makine öğrenimi tahmin yöntemleri ise, son zamanlarda değişkenler arasındaki karmaşık bağımlılık yapılarının
modellenmesinde sıklıkla kullanılmaktadır. Bu çalışma kapsamında, anlık deniz seviyesini yüksek doğrulukta tahmin etmek ve doğrusal
tahmin yöntemleri ile doğrusal olmayan tahmin yöntemlerini karşılaştırmak amacıyla makine öğrenimi tahmin yöntemlerinden Çoklu
Doğrusal Regresyon (ÇDR) doğrusal modeli, Destek Vektör Regresyonu (DVR) doğrusal olmayan model ve Rastgele Orman Regresyonu
(ROR) doğrusal olmayan model algoritmaları kullanılmış ve tahmin performansları karşılaştırılmıştır. Çalışma sonucunda anlık deniz
seviyesi için en yüksek tahmin performansı ROR ile elde edilmiş olup, en düşük tahmin performansı ise ÇDR yöntemi ile elde edilmiştir.
Sonuç olarak anlık deniz seviyelerinin çalışmada kullanılan öncül bilgiler ile ROR kullanılarak yüksek hassasiyette tahmin edilebileceği
ve doğrusal tahmin modelinin anlık deniz seviyesinin karmaşık bağımlılık yapısının modellenmesinde yetersiz olduğu gösterilmiştir.