Light-transmitting wood-based composite comprising microencapsulated phase-change material for sustainable energy applications in buildings


Can A., Gencel O., Ustaoğlu A., SARI A., Muñoz P., Subaşı A., ...More

Wood Material Science and Engineering, 2025 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Publication Date: 2025
  • Doi Number: 10.1080/17480272.2025.2482153
  • Journal Name: Wood Material Science and Engineering
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, CAB Abstracts, Communication Abstracts, Compendex, INSPEC, Metadex, Veterinary Science Database, Civil Engineering Abstracts
  • Keywords: building, energy efficiency, Epoxy resin, glass fibre, wood chips
  • Karadeniz Technical University Affiliated: Yes

Abstract

The study explored an innovative building material that provides both lighting energy savings and thermal comfort by integrating microencapsulated phase change material (µPCM) into light-transmissive wood-based composite material. The wood-based composite comprises epoxy resin (Er), wood chips (Wc), fibre (Gf), various μPCM concentrations, and plastic optical grids to transmit light through the plate. The highest thermal conductivity, 0.21 W/mK, was observed for µPCM0 samples. Differential scanning calorimetry (DSC) analysis presented that a composite containing 100 wt% µPCM has a melting temperature of 25 °C and a latent heat storage of 35.0 J/g. µPCM100 offered a lower surface temperature approximately 6 °C colder when the hot weather hours were taken into account. The wood composites with µPCM contributed to maintaining lower peak room temperatures and extended temperature stability overnight. While 1.923 km/s UPV was obtained in µPCM0 samples, the UPV value after 100% µPCM addition compared to the weight of the old was 1.845 km/s. Compared to the µPCM0 samples, the ErµPCMWc samples had a light transmittance rate of almost 64% greater. The study's findings could improve artificial lighting efficiency, significantly lessening indoor temperature fluctuations, enhancing thermal comfort and promoting sustainable building solutions.