Journal of Organometallic Chemistry, vol.1020, 2024 (SCI-Expanded)
Cancer has grown to be a global issue and has put strain on the healthcare system in recent years. Promising alternatives for the treatment of cancer include photodynamic therapy (PDT). For therapeutic purposes, phthalocyanines have been widely employed as sensitizers, especially for photodynamic treatment (PDT). The primary goal of this work is to examine the photophysicochemical properties of newly synthesized and characterized pyrazoline substituted peripherally tetra substituted and non-peripherally tetra substituted ZnII-phthalocyanines. Several techniques were applied during the characterization of the novel compounds, such as mass (MALDI-TOF), nuclear magnetic resonance (NMR), infrared (FT-IR), and UV–Vis spectroscopies. The impact of substituting 3-(5-(4-(dimethylamino)phenyl)-1-phenyl-4,5-dihydro-1H-pyrazole-3-yl)phenol from the peripheral and non-peripheral positions on solubility and aggregation behaviors was examined. The newly synthesized pyrazoline substituted ZnII-phthalocyanines display high solubility in common organic solvents and additionally do not aggregate at concentrations from 1 to 10 μM. The potential use of the pyrazoline substituted ZnII-phthalocyanines as a photosensitizers in photodynamic therapy was investigated by examining their photophysical and photochemical properties. Non-peripheral pyrazoline substituted ZnII-phthalocyanine (HY-ZnPcnp) may be a potential photosensitizer for PDT, owing to an examination of the results.