Interval-valued fuzzy n-ary subhypergroups of n-ary hypergroups


Davvaz B., KAZANCI O., YAMAK S.

NEURAL COMPUTING & APPLICATIONS, cilt.18, sa.8, ss.903-911, 2009 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 18 Sayı: 8
  • Basım Tarihi: 2009
  • Doi Numarası: 10.1007/s00521-008-0207-1
  • Dergi Adı: NEURAL COMPUTING & APPLICATIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.903-911
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

This paper provides a continuation of ideas presented by Davvaz and Corsini (J Intell Fuzzy Syst 18(4):377-382, 2007). Our aim in this paper is to introduce the concept of quasicoincidence of a fuzzy interval value with an interval-valued fuzzy set. This concept is a generalized concept of quasicoincidence of a fuzzy point within a fuzzy set. By using this new idea, we consider the interval-valued (a, a aq)-fuzzy n-ary subhypergroup of a n-ary hypergroup. This newly defined interval-valued (a, a aq)-fuzzy n-ary subhypergroup is a generalization of the usual fuzzy n-ary subhypergroup. Finally, we consider the concept of implication-based interval-valued fuzzy n-ary subhypergroup in an n-ary hypergroup; in particular, the implication operators in A ukasiewicz pound system of continuous-valued logic are discussed.