The Petrology of Tuffisite in a Trachytic Diatreme from the Kızılcaören Alkaline Silicate-Carbonatite Complex, NW Anatolia


ERSOY E. Y., Yavuz H., UYSAL İ., Palmer M. R., Mueller D.

MINERALS, cilt.15, sa.8, 2025 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 8
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/min15080867
  • Dergi Adı: MINERALS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Aerospace Database, CAB Abstracts, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

The K & imath;z & imath;lca & ouml;ren alkaline silicate-carbonatite complex, located in the Sivrihisar (Eski & scedil;ehir, NW Anatolia) region, includes phonolite, trachyte, carbonatite, pyroclastics, and REE mineralization (bastn & auml;site as a critical REE mineral). The emplacement and origin of this complex are poorly constrained, as previous studies mostly concentrated on the petrology of the alkaline rocks, carbonatite, and REE-mineralization, and little attention has been paid to the texture, composition, and origin of the pyroclastic rocks. The pyroclastic rocks in the region contain both rounded and angular-shaped cognate and wall-rock xenoliths derived from syenitic/trachytic hypabyssal rocks and carbonatites, as well as juvenile components such as carbonatite droplets and pelletal lapilli. The syenitic/trachytic hypabyssal rock fragments contain sanidine with high BaO (up to 3.3 wt.%) contents, amphibole (magnesio-fluoro-arfvedsonite), and apatite. Some clasts seem to have reacted with carbonatitic material, including high-SrO (up to 0.6 wt.%) calcite, dolomite, baryte, benstonite, fluorapatite. The carbonatite rock fragments are composed of calcite, baryte, fluorite, and bastn & auml;site. The carbonatite droplets have a spinifex-like texture and contain rhombohedral Mg-Fe-Ca carbonate admixtures, baryte, potassic-richterite, and parisite embedded in larger crystals of high-SrO (up to 0.7 wt.%) calcite. The spherical-elliptical pelletal lapilli (2-3 mm) contain a lithic center mantled by flow-aligned prismatic sanidine (with BaO up to 3.5 wt.%) microphenocrysts settled in a high-SrO (up to 0.7 wt.%) cryptocrystalline CaCO3 matrix. All these components are embedded in an ultra-fine-grained matrix. The EPMA results from the matrix reveal that, chemically, it consists largely of BaO-rich sanidine, with minor carbonate, baryte and Fe-Ti oxide. The presence of pelletal lapilli, which is one of the most common and characteristic features of diatreme fillings in alkaline silicate-carbonatite complexes, reveals that the pyroclastic rocks in the region represent a tuffisite formed by intrusive fragmentation and fluidization processes in the presence of excess volatile components consisting mainly of CO2 and F.