CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024 (SCI-Expanded)
Metaheuristics are commonly used in various fields, including real-life problem-solving and engineering applications. The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System Algorithm (ACSA). The control of the circulatory system inspires it and mimics the behavior of hormonal and neural regulators involved in this process. The work initially evaluates the effectiveness of the suggested approach on 16 two-dimensional test functions, identified as classical benchmark functions. The method was subsequently examined by application to 12 CEC 2022 benchmark problems of different complexities. Furthermore, the paper evaluates ACSA in comparison to 64 metaheuristic methods that are derived from different approaches, including evolutionary, human, physics, and swarm-based. Subsequently, a sequence of statistical tests was undertaken to examine the superiority of the suggested algorithm in comparison to the 7 most widely used algorithms in the existing literature. The results show that the ACSA strategy can quickly reach the global optimum, avoid getting trapped in local optima, and effectively maintain a balance between exploration and exploitation. ACSA outperformed 42 algorithms statistically, according to post-hoc tests. It also outperformed 9 algorithms quantitatively. The study concludes that ACSA offers competitive solutions in comparison to pop & uuml;ler methods.