New Design of a Supervised Energy Disaggregation Model Based on the Deep Neural Network for a Smart Grid

Creative Commons License

ÇAVDAR İ. H. , Faryad V.

ENERGIES, vol.12, no.7, 2019 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 12 Issue: 7
  • Publication Date: 2019
  • Doi Number: 10.3390/en12071217
  • Title of Journal : ENERGIES


Energy management technology of demand-side is a key process of the smart grid that helps achieve a more efficient use of generation assets by reducing the energy demand of users during peak loads. In the context of a smart grid and smart metering, this paper proposes a hybrid model of energy disaggregation through deep feature learning for non-intrusive load monitoring to classify home appliances based on the information of main meters. In addition, a deep neural model of supervised energy disaggregation with a high accuracy for giving awareness to end users and generating detailed feedback from demand-side with no need for expensive smart outlet sensors was introduced. A new functional API model of deep learning (DL) based on energy disaggregation was designed by combining a one-dimensional convolutional neural network and recurrent neural network (1D CNN-RNN). The proposed model was trained on Google Colab's Tesla graphics processing unit (GPU) using Keras. The residential energy disaggregation dataset was used for real households and was implemented in Tensorflow backend. Three different disaggregation methods were compared, namely the convolutional neural network, 1D CNN-RNN, and long short-term memory. The results showed that energy can be disaggregated from the metrics very accurately using the proposed 1D CNN-RNN model. Finally, as a work in progress, we introduced the DL on the Edge for Fog Computing non-intrusive load monitoring (NILM) on a low-cost embedded board using a state-of-the-art inference library called uTensor that can support any Mbed enabled board with no need for the DL API of web services and internet connectivity.