Atomic-scale characterisation of sodium aluminosilicate hydrates (N-A-S-H) and Mg-substituted N(-M)-A-S-H using XANES


Ke X., Baki V. A., Large A. I., Held G., Walkley B., Li J.

APPLIED GEOCHEMISTRY, cilt.147, 2022 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 147
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.apgeochem.2022.105515
  • Dergi Adı: APPLIED GEOCHEMISTRY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, CAB Abstracts, Chemical Abstracts Core, Compendex, Environment Index, Geobase, Pollution Abstracts, Veterinary Science Database
  • Karadeniz Teknik Üniversitesi Adresli: Hayır

Özet

The chemical structures of aluminosilicate hydrates presented in alkali-activated geopolymer materials underpin their performances. Mg-substituted sodium aluminosilicate hydrates (N(-M)-A-S-H) are likely to be present in alkali-activated geopolymer materials prepared using MgO-containing precursors, however, their atomic-level structures remain unclear. The lack of such knowledge made it challenging to identify and distinguish N(-M)A-S-H from complex alkali-activated geopolymer systems (i.e., alkali-activated slag, alkali-activated Mg-rich minerals), and therefore brought challenges in understanding and predicting their durability. This study characterised for the first time the atomic structures of the synthetic N(-M)-A-S-H gels, prepared through ionexchange or co-synthesis, using X-ray absorption near-edge spectroscopy (XANES) at Si, Al and Mg K-edge. The results suggest that the substitution of Mg in the extra-framework locations of the alkali aluminosilicate hydrates (N-A-S-H) leads to negligible changes in the coordination environments of the aluminosilicate framework. However, the Mg coordination environment is distinguishably different from other Mg-containing phases in the systems, e.g., hydrotalcite. The Mg K-edge XANES of N(-M)-A-S-H shows a 0.8-1.2 eV shift compared with hydrotalcite. The results presented in this study can be used as the fingerprint to probe the presence of N(-M)-AS-H in alkali-activated geopolymer materials containing Mg element.