Effects of environmental parameters on spatial and temporal distribution of marine microbial communities in the southern Black Sea


Öztürk R. Ç., Feyzioğlu A. M., Çapkin E., Yildiz I., Altinok I.

Marine Environmental Research, cilt.195, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 195
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.marenvres.2024.106344
  • Dergi Adı: Marine Environmental Research
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Environment Index, Geobase, Metadex, Pollution Abstracts, Veterinary Science Database, DIALNET, Civil Engineering Abstracts
  • Anahtar Kelimeler: 16S rRNA, ASV, eDNA, Microbial community, Microbial diversity
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

The Black Sea is a unique environment with strong and permanent vertical stratification, with a thin layer of oxic zone above and a permanent anoxic zone below. Few high-throughput genomic surveys have been conducted to examine microbiota in the Black Sea. Yet, there is no study on the seasonal and vertical variation in microbial community compositions, driving forces and mechanisms of community assembly. In this study, seasonal, vertical, and spatial microbial assemblages were studied in terms of diversity, abundance, and community structure using 16S rRNA metabarcoding. 16S rRNA metabarcoding confirmed seasonal changes in microbial communities and the presence of distinct microbial groups among different water layers. Taxa belonging to Cyanobiaceae contributed a large fraction of the total biomass and were the most abundant autotrophic bacteria found across the whole water column, including hydrogen sulfide-containing anoxic zone. Temperature, salinity, water density, conductivity, light, chlorophyll-a, O2, NO3, NH3, PO4, Si, and H2S had a significant influence on the vertical bacterial community assemblages. The copper mine discharge system at 180 m did not affect microbial community structure and composition. Temperature seemed to be a primary factor in the variance between shallow depths. In conclusion, the lack of light, low dissolved oxygen levels, and low temperature do not restrict microbial diversity, as proven by the higher diversity observed in deeper zones. Wastewater in Black Sea region may be discharged into the Black Sea to depth of 180 m or deeper without impacting microbial ecology.