Static Lateral Load Resistance of Parallel Bamboo Strand Panel-to-Metal Single-Bolt Connections - Part 2: Fracture Model


Yu X., Chen C., DEMİREL S., Zhang J.

BIORESOURCES, cilt.14, sa.3, ss.5747-5763, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 3
  • Basım Tarihi: 2019
  • Doi Numarası: 10.15376/biores.14.3.5747-5763
  • Dergi Adı: BIORESOURCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.5747-5763
  • Karadeniz Teknik Üniversitesi Adresli: Evet

Özet

The effect of end distance was evaluated relative to the static ultimate lateral resistance load of single-shear unconstrained metal-to-parallel bamboo strand panel (PBSP) single-bolt connections that failed in end tear-out, net cross-section tension modes. Empirical equations for estimation of the static ultimate lateral resistance loads of the evaluated connections were derived. The connection consisted of a PBSP main member fastened to a metal plate as a side member using a 6 mm diameter bolt without a nut or washer. The stress concentration factor was considered in the process of deriving the estimation equations for static ultimate lateral resistance loads. The experimental results indicated that the stress concentration factor was a linear function of end-distance to bolt-diameter ratio, (e/d), for connections that failed in end tear-out mode, while a quadratic function of (e/d) for connections that failed in net cross-section tension mode. The derived estimation equations including stress concentration factor can reasonably estimate the static ultimate lateral resistance load of single-shear unconstrained metal-to-PBSP single-bolt connections evaluated in this study.